Publications by authors named "Masataka Umitsu"

Activation of a tyrosine kinase receptor Met by hepatocyte growth factor (HGF) requires binding of proteolytically activated, two-chain (tc) HGF, but the biochemical detail of this ligand-receptor interaction specificity remains elusive because biologically inactive single chain (sc) HGF can also bind to Met with high affinity. We found that this proteolysis-independent Met binding can be eliminated by mutagenesis introduced in the kringle domain without losing the ability to bind and activate cellular Met receptor after proteolytic activation, arguing against this site's involvement in the physiological signalling. This non-signal producing Met-HGF interaction can also be eliminated by addition of a heparin mimetic sucrose octasulphate (SOS).

View Article and Find Full Text PDF

Activation of hepatocyte growth factor (HGF) by proteolytic processing is triggered in cancer microenvironments, and subsequent signaling through the MET receptor is involved in cancer progression. However, the structure of HGF remains elusive, and few small/medium-sized molecules can modulate HGF. Here, we identified HiP-8, a macrocyclic peptide consisting of 12 amino acids, which selectively recognizes active HGF.

View Article and Find Full Text PDF

Non-native ligands for growth factor receptors that are generated by chemical synthesis are applicable to therapeutics. However, non-native ligands often regulate cellular signaling and biological responses in a different manner than native ligands. Generation of surrogate ligands comparable to native ligands is a challenging need.

View Article and Find Full Text PDF

Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the CHCHD2 gene are linked to some cases of Parkinson's disease, prompting research into its role in cellular health and disease.
  • Experiments in both fruit flies and mammalian cells reveal that losing CHCHD2 leads to mitochondrial dysfunction, oxidative stress, and the loss of dopamine-producing neurons, resulting in movement issues as the organism ages.
  • The presence of CHCHD2 is increased under mitochondrial stress conditions, and it interacts with cytochrome c, influencing cell death and energy production, highlighting its crucial role in managing mitochondrial health.
View Article and Find Full Text PDF

Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3-D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion-metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor-derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma.

View Article and Find Full Text PDF

The polarity protein Scribble (SCRIB) regulates apical-basal polarity, directional migration and tumour suppression in Drosophila and mammals. Here we report that SCRIB is an important regulator of myeloid cell functions including bacterial infection and inflammation. SCRIB interacts directly with the NADPH oxidase (NOX) complex in a PSD95/Dlg/ZO-1 (PDZ)-domain-dependent manner and is required for NOX-induced reactive oxygen species (ROS) generation in culture and in vivo.

View Article and Find Full Text PDF

Calcium ion (Ca) is an important second messenger that regulates numerous cellular functions. Intracellular Ca concentration ([Ca]i) is strictly controlled by Ca channels and pumps on the endoplasmic reticulum (ER) and plasma membranes. The ER calcium pump, sarco/endoplasmic reticulum calcium ATPase (SERCA), imports Ca from the cytosol into the ER in an ATPase activity-dependent manner.

View Article and Find Full Text PDF

HGF-Met signaling contributes to various biological events by controlling cell migration. Since the abnormal activation of Met receptor causes cancer progression, inhibitors such as neutralizing antibodies are regarded as promising therapeutics. HGF is secreted as a single-chain (sc) precursor and is processed by extracellular proteases to generate disulfide-bonded two-chain (tc) HGF.

View Article and Find Full Text PDF

α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through β-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited state and the actin-binding domain of αN-catenin. Together with the small-angle x-ray scattering analysis of full-length αN-catenin, we deduced an elongated multidomain assembly of monomeric α-catenin that structurally and functionally couples the vinculin- and actin-binding mechanisms.

View Article and Find Full Text PDF

Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity.

View Article and Find Full Text PDF

S-adenosylmethionine (AdoMet) is a methyl donor used by a wide variety of methyltransferases, and it is also used as the source of an alpha-amino-alpha-carboxypropyl ("acp") group by several enzymes. tRNA-yW synthesizing enzyme-2 (TYW2) is involved in the biogenesis of a hypermodified nucleotide, wybutosine (yW), and it catalyzes the transfer of the "acp" group from AdoMet to the C7 position of the imG-14 base, a yW precursor. This modified nucleoside yW is exclusively located at position 37 of eukaryotic tRNA(Phe), and it ensures the anticodon-codon pairing on the ribosomal decoding site.

View Article and Find Full Text PDF

The recent explosion in genome sequencing has revealed the great diversity of the cadherin superfamily. Within the superfamily, protocadherins, which are expressed mainly in the nervous system, constitute the largest subgroup. Nevertheless, the structures of only the classical cadherins are known.

View Article and Find Full Text PDF