A 78-year-old man was diagnosed with lymph node metastasis 2 months after surgery for gastric neuroendocrine carcinoma. He received chemotherapy(CDDP plus CPT-11)and showed partial response(PR)after 3 courses of the regimen. Serum CEA increased 5 months after surgery, thus nab-paclitaxel plus ramucirumab was administered.
View Article and Find Full Text PDFA 78-year-old man was diagnosed as HER2-positive unresectable advanced gastric cancer(cT4aN3M1[LYM], Stage Ⅳ). After 2 courses of first-line chemotherapy(S-1 plus oxaliplatin plus trastuzumab), PR was achieved. The treatment could not be continued due to adverse events after 5 courses, thus second-line chemotherapy was conducted.
View Article and Find Full Text PDFIntroduction And Importance: Giant megacolon requiring emergency surgery is rare. Eventration of the diaphragm associated with giant megacolon is also uncommon.
Case Presentation: We report a 66-year-old male who presented with abdominal distention and progressive dyspnea.
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells.
View Article and Find Full Text PDFNeuron-restrictive silencer factor (NRSF) is a zinc-finger transcription factor that binds to specific DNA sequences (NRSE) to repress transcription. By down-regulating the transcription of its target genes, NRSF contributes to the regulation of various biological processes, including neuronal differentiation, carcinogenesis and cardiovascular homeostasis. We previously reported that NRSF regulates expression of the cardiac fetal gene program, and that attenuation of NRSF-mediated repression contributes to genetic remodeling in hearts under pathological conditions.
View Article and Find Full Text PDFMol Cell Biol
September 2010
Subjecting cardiomyocytes to mechanical stress or neurohumoral stimulation causes cardiac hypertrophy characterized in part by reactivation of the fetal cardiac gene program. Here we demonstrate a new common mechanism by which these stimuli are transduced to a signal activating the hypertrophic gene program. Mechanically stretching cardiomyocytes induced nuclear accumulation of myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), in a Rho- and actin dynamics-dependent manner.
View Article and Find Full Text PDFRationale: Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac hypertrophy remains to be characterized.
Objective: We investigated the effect of ANP-GC-A signaling on transient receptor potential subfamily C (TRPC)6, a receptor-operated Ca(2+) channel known to positively regulate prohypertrophic calcineurin-nuclear factor of activated T cells (NFAT) signaling.
Rationale: It is known that the transcriptional coactivator p300 is crucially involved in the differentiation and growth of cardiac myocytes during development. However, the physiological function of p300 in the postnatal hearts remains to be characterized.
Objective: We have now investigated the physiological function of p300 in adult hearts.
Background: Pharmacological interventions for prevention of sudden arrhythmic death in patients with chronic heart failure remain limited. Accumulating evidence suggests increased ventricular expression of T-type Ca(2+) channels contributes to the progression of heart failure. The ability of T-type Ca(2+) channel blockade to prevent lethal arrhythmias associated with heart failure has never been tested, however.
View Article and Find Full Text PDFVentricular myocytes are known to show increased expression of the cardiac hormones atrial and brain natriuretic peptide (ANP and BNP, respectively) in response to pathological stress on the heart, but their function during the progression of nonischemic dilated cardiomyopathy remains unclear. In this study, we crossed a mouse model of dilated cardiomyopathy and sudden death, which we generated by cardioselectively overexpressing a dominant-negative form of the transcriptional repressor neuron-restrictive silencer factor (dnNRSF Tg mice), with mice lacking guanylyl cyclase-A (GC-A), a common receptor for ANP and BNP, to assess the effects of endogenously expressed natriuretic peptides during progression of the cardiomyopathy seen in dnNRSF Tg mice. We found that dnNRSF Tg;GC-A(-/-) mice were born normally, but then most died within 4 wk.
View Article and Find Full Text PDF