Partially fluorinated dimyristoylphosphatidylcholines (DMPCs) involving double alkyl chains are employed to control the phonon generation in thin films, which is examined by infrared (IR) spectroscopy coupled with multiple-angle incidence resolution spectrometry (MAIRS). technique. Compounds having perfluoroalkyl (Rf) chains are known to exhibit phonon bands in IR spectra because of the strong dipole-dipole interactions.
View Article and Find Full Text PDFNovel terminally perfluorobutyl group-containing ether-linked phosphatidylcholines with different alkyl chain lengths (di-O-F4-Cn-PCs, n = 14,16 and 18) were developed as possible materials for stable liposomes aiming at applications of structural and functional analyses of membrane proteins. Differential scanning calorimetric investigations of the thermotropic transition of hydrated di-O-F4-Cn-PC bilayers demonstrated that the transition temperature of every di-O-F4-Cn-PC decreases by ~20 °C compared to their corresponding non-fluorinated PCs, di-O-Cn-PCs. With the elongation of the hydrophobic chain, on the other hand, the transition enthalpy (ΔH) and entropy (ΔS) increased in a linear manner.
View Article and Find Full Text PDFThe interaction of proteins with hydrophobic ligands in biological membranes is an important research topic in the life sciences. The hydrophobic nature of ligands, especially their lack of water solubility, often makes it difficult to experimentally investigate their interactions with proteins, thus hampering quantitative evaluation based on thermodynamic parameters. The fatty acid-binding proteins, particularly FABP3, discussed in this review can recognize fatty acids, a primary component of membrane lipids, with high affinity.
View Article and Find Full Text PDFIn polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation.
View Article and Find Full Text PDFAmphiphilic molecules with one or more perfluoroalkyl groups (Rf, CF), which show peculiar interfacial properties, are attracting much attention in membrane protein science. We recently have developed a partially fluorinated dimyristoylphosphatidylcholine (DMPC) with a perfluorobutyl group in the hydrophobic chain terminal (F4-DMPC) and demonstrated that F4-DMPC is a promising material for incorporating membrane proteins. Moreover, we have found out that membrane properties of a series of partially fluorinated DMPCs with different Rf chain lengths (Fn-DMPCs) vary in a significant Rf chain length-dependent manner.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
May 2021
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1'-O-octacosamethylene-2,2'-di-O-tetradecyl-bis-(sn-glycero)-3,3'-diphosphocholine (AC-(di-O-C14PC)), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC) monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable.
View Article and Find Full Text PDFPerfluoroalkyl (R) chains have a specific helical conformation due to the steric repulsion between the adjacent CF units. Although R chains have no chiral center, two chiral structures, i.e.
View Article and Find Full Text PDFThis study aims to investigate bacteriorhodopsin (bR) molecules reconstituted in lipid bilayers composed of di(nonafluorotetradecanoyl)-phosphatidylcholine (F4-DMPC), a partially fluorinated analogue of dimyristoyl-phosphatidylcholine (DMPC) to clarify the effects of partially fluorinated hydrophobic chains of lipids on protein's stability. Calorimetry measurements showed that the chain-melting transition of F4-DMPC/bR systems occurs at 3.5 °C, whereas visible circular dichroism (CD) and X-ray diffraction measurements showed that a two-dimensional (2D) hexagonal lattice formed by bR trimers in F4-DMPC bilayers remains intact even above 30 °C, similar to bR in a native purple membrane.
View Article and Find Full Text PDF3-Methyl-4-nitrophenol (3M4NP) is formed in soil as a hydrolysis product of fenitrothion, one of the major organophosphorus pesticides. A Pseudomonas strain was isolated as a 3M4NP degrader from a crop soil and designated TSN1. This strain utilized 3M4NP as a sole carbon and energy source.
View Article and Find Full Text PDFThe CF symmetric stretching vibration (ν(CF)) band of a perfluoroalkyl (Rf) group in an infrared (IR) spectrum exhibits a unique character, that is, an apparent high wavenumber shift with increasing the chain length, which is an opposite character to that of the CH stretching vibration band of a normal alkyl chain. To reveal the mechanism of the unusual IR band shift, two vibrational characters of an Rf chain are focused: (1) a helical conformation of an Rf chain, (2) the carbon (C) atoms having a smaller mass than the fluorine (F) atom dominantly vibrate as a coupled oscillator leaving F atoms stay relatively unmoved. These indicate that a "coupled oscillation of the skeletal C atoms" of an Rf chain should be investigated considering the helical structure.
View Article and Find Full Text PDFFluorinated lipids and surfactants are attractive biomimetic materials for the extraction and reorganization of membrane proteins because of the biological inertness of fluorocarbons. We investigated the fundamental physical properties of a partially fluorinated phospholipid (F4-DMPC), such as phase transition, area thermal expansion, and lateral lipid diffusion, to evaluate the intermolecular interaction of F4-DMPC in the hydrophobic region quantitatively on the basis of free-volume theory. Fluorescence microscope observation of the supported lipid bilayer (SLB) of F4-DMPC showed that the phase transition between the liquid crystalline and gel phases occurred at 5 °C and that the area thermal expansion coefficient was independent of the temperature near the phase transition temperature.
View Article and Find Full Text PDFA discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface.
View Article and Find Full Text PDFReconstituted membranes with diverse diacylphospholipids were prepared by using bacteriorhodopsin (bR) in which the intrinsic lipid content was decreased to 24% of the original while the trimeric structure and photocycle of bR were retained. Four phospholipids with a different headgroup, phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylserine (PS), were adopted for reconstitution. By varying the lipid-protein ratios, the interactions of these phospholipids with bR, as a boundary lipid, were evaluated by solid state (2)H/(31)P NMR, circular dichroism (CD), and laser-flash photolysis.
View Article and Find Full Text PDFPurple membrane (PM), which is a membrane patch formed by the self-assembly of the membrane protein bacteriorhodopsin (bR) with archaeal lipids, is a good subject for studying the mechanism for the supramolecular structural formation of membrane proteins. Several studies have suggested that PM is not simply planar but that it has a curvature. Atomic force microscopy (AFM) studies also indicate the presence of dome-like structures (bumps) on the cytoplasmic surface of PM.
View Article and Find Full Text PDFA membrane protein bacteriorhodopsin (bR) that is successfully reconstituted in liposome of a novel partially fluorinated analog of dimyristoylphosphatidylcholine (DMPC) with the perfluorobutyl segments in the myristoyl groups, diF4H10-PC, has been investigated by some spectroscopic and X-ray diffraction techniques to clarify effects of substitution of nine hydrogen atoms by fluorine atoms on structural and physical properties of the membrane protein by comparison with the previous results on proteoliposome of bR and DMPC. Below the gel-to-liquid crystalline phase transition of diF4H10-PC bilayer, bR molecules adopt the two-dimensional lattice structure of trimers as the structural unit and show a photocycle very similar to that of native purple membrane like reconstituted bR in DMPC liposome in the gel phase. Even upon heating up to temperatures well above the phase transition, the nativelike functional reconstitution and higher structural stability of bR molecules in diF4H10-PC liposome are retained, which strikingly contrasts with lipid phase transition-induced disaggregation of protein molecules and light-induced denaturation in DMPC liposome.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
June 2011
Solubilization and structural stability of a membrane protein bacteriorhodopsin (bR) with n-octyl-β-thioglucoside (OTG) was investigated in comparison with a previous study on bR solubilized with n-octyl-β-glucoside (OG). Highly efficient and stable solubilization of bR with OTG was accomplished above the OTG concentration of about 15 mM. In comparison with OG-solubilized bR, the structural stability of OTG-solubilized bR was high in the dark and under light illumination.
View Article and Find Full Text PDFPrevious studies on the correlation between bacteriorhodopsin (bR) disassembly and photobleaching suggested that a weakening of intermolecular interactions is responsible for irreversible photobleaching (Mukai, Y.; Kamo, N.; Mitaku, S.
View Article and Find Full Text PDFKinetic studies of irreversible photobleaching of bacteriorhodopsin (bR) in purple membrane (PM) at neutral pH have previously indicated the existence of two kinds of species which differ in their structural stability. bR was shown to have kinetically slow- and fast-decayed components with the faster one increasing with changes in intra- and intermolecular structures in darkness. However, our recent work reported that photobleaching kinetics above pH 10 were characterized by a single-decay component.
View Article and Find Full Text PDFA predictive software system, SOSUI-GramN, was developed for assessing the subcellular localization of proteins in Gram-negative bacteria. The system does not require the sequence homology data of any known sequences; instead, it uses only physicochemical parameters of the N- and C-terminal signal sequences, and the total sequence. The precision of the prediction system for subcellular localization to extracellular, outer membrane, periplasm, inner membrane and cytoplasmic medium was 92.
View Article and Find Full Text PDFBacteriorhodopsin (bR), a membrane protein that can generate a light-driven proton pump, was successfully reconstituted into vesicles composed of an artificial cyclic lipid that mimics archaeal membrane lipids. Unlike reconstituted bR in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles, the net topology and structure of bR molecules in cyclic lipid vesicles are identical to those in the native purple membrane of Halobacterium salinarum.
View Article and Find Full Text PDFAll amino acid sequences derived from 248 prokaryotic genomes, 10 invertebrate genomes (plants and fungi) and 10 vertebrate genomes were analysed by the autocorrelation function of charge sequences. The analysis of the total amino acid sequences derived from the 268 biological genomes showed that a significant periodicity of 28 residues is observable for the vertebrate genomes, but not for the other genomes. When proteins with a charge periodicity of 28 residues (PCP28) were selected from the total proteomes, we found that PCP28 in fact exists in all proteomes, but the number of PCP28 is much larger for the vertebrate proteomes than for the other proteomes.
View Article and Find Full Text PDFThe numbers of membrane proteins in the current genomes of various organisms provide an important clue about how the protein world has evolved from the aspect of membrane proteins. Numbers of membrane proteins were estimated by analyzing the total proteomes of 248 prokaryota, using the SOSUI system for membrane proteins (Hirokawa , , 1998) and SOSUI-signal for signal peptides (Gomi , , 2004). The results showed that the ratio of membrane proteins to total proteins in these proteomes was almost constant: 0.
View Article and Find Full Text PDFKinetic investigations of irreversible photobleaching of bacteriorhodopsin (bR) in purple membrane (PM) at high temperature have previously shown two kinds of bR species upon light illumination. The bR species consist of kinetically fast- and slow-denatured components, whose proportions were dependent upon structural changes in dark, as shown by CD. In order to elucidate electrostatic contribution on the heterogeneous stability and the bR structure in PM, photobleaching behaviour and structural changes over a wide pH range were investigated by kinetics as well as various spectroscopic techniques.
View Article and Find Full Text PDF