Publications by authors named "Masashi Muroi"

We previously suggested that the signal transducer and activator of transcription 1 (STAT1) gene is autoregulated in an interferon (IFN)-dependent manner via a distal regulatory region approximately 5.5-6.2 kb upstream of the murine and human STAT1 promoters (designated 5.

View Article and Find Full Text PDF

Inducible nitric oxidase (iNOS) encoded by Nos2 is a representative IFNγ-inducible effector molecule that plays an important role in both innate and adaptive immunity. In the present study, we demonstrated that full-length NF-κB p105 (p105), which is a precursor of NF-κB p50 (p50), is required for full activation of IFNγ-induced iNOS expression in the RAW264.7 mouse macrophage cell line.

View Article and Find Full Text PDF

Eosinophils are typical effector cells associated with type 2 immune responses and play key roles in the pathogenesis of allergic diseases. These cells are activated by various stimuli, such as cytokines, chemokines, and growth factors, but the regulatory mechanisms of eosinophil effector functions remain unclear. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), a transmembrane protein belonging to the tumor necrosis factor (TNF) receptor superfamily, is a well-known regulatory molecule for T cell activation.

View Article and Find Full Text PDF

LPS interacts with TLR4, which play important roles in host-against-pathogen immune responses, by binding to MD-2 and inducing an inflammatory response. In this study, to our knowledge, we found a novel function of lipoteichoic acid (LTA), a TLR2 ligand, that involves suppression of TLR4-mediated signaling independently of TLR2 under serum-free conditions. LTA inhibited NF-κB activation induced by LPS or a synthetic lipid A in a noncompetitive manner in human embryonic kidney 293 cells expressing CD14, TLR4, and MD-2.

View Article and Find Full Text PDF

Excessive activation of Toll-like receptor (TLR) leads to sepsis. Inflammatory responses to various microbiological components are initiated via different TLR proteins, but all TLR signals are transmitted by TRAF6. We reported that TRAF6 associated with ubiquitinated IRAK-1 undergoes proteasome-mediated degradation, suggesting that IRAK-1 has a negative regulatory role in TLR signaling.

View Article and Find Full Text PDF

Assays using lysate reagents prepared from horseshoe crab hemocyte extract (limulus amoebocyte lysate, LAL) are commonly and widely used to detect and measure endotoxin in parenteral drugs and medical devices. However, lysate reagents suffer from lot-to-lot variations leading to possible fluctuations in testing. Also, this continued usage of lysate reagents leads to the possible decline of the horseshoe crab population.

View Article and Find Full Text PDF

Background: Type 2 innate lymphoid cells (ILC2s) are one of the sources of IL-5 and IL-13 in allergic airway inflammation. Innate immune receptors such as Toll-like receptors (TLRs) expressed on epithelial cells could contribute to ILC2 activation through IL-33 production, but a direct effect of TLRs on ILC2s remains to be elucidated.

Objectives: We hypothesized that TLRs can directly activate lung ILC2s and participate in the pathogenesis of asthma.

View Article and Find Full Text PDF

The signal transducer and activator of transcription 1 (STAT1), a pivotal transcription factor in Janus kinase (JAK)-STAT signaling, regulates the expression of a wide range of immune-related genes, including interferon (IFN) regulatory factor 1 (IRF1). In this study, we found that IRF1 could induce STAT1 phosphorylation and in turn STAT1 activation. When IRF1 was transiently expressed in HEK293 cells, STAT1 phosphorylated at Y701, dimerized and bound to an oligonucleotide containing a gamma-activated sequence (GAS) derived from the IRF1 promoter.

View Article and Find Full Text PDF

We found that AKT1, a primary effector molecule of PI3K-AKT signaling, distinctively suppressed Toll-like receptor (TLR)-mediated MyD88-dependent and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling by inhibiting NF-κB activation and IRF3 activity independently of its kinase activity. In AKT1 knockout RAW264.7 cells, lipopolysaccharide (LPS)-induced transcription and protein production of cytokines including IL-1β and TNF-α (regulated by the MyD88-dependent pathway), as well as IFN-β and RANTES (C-C motif chemokine ligand 5: CCL-5; regulated by the TRIF-dependent pathways) was enhanced compared to wild type cells.

View Article and Find Full Text PDF

Macrophages induce the innate immunity by recognizing pathogens through Toll-like receptors (TLRs), which sense pathogen-associated molecular patterns. Myeloid differentiation factor 88 (MyD88), which is an essential adaptor molecule for most TLRs, mediates the induction of inflammatory cytokines through nuclear factor κB (NF-κB). Trichothecene mycotoxin deoxynivalenol (DON) shows immunotoxic effects by interrupting inflammatory mediators produced by activated macrophages.

View Article and Find Full Text PDF

The NLRP3 inflammasome, composed of caspase-1, NLRP3 and ASC, plays a critical role in the clearance of microbial pathogens. Here, we found that the treatment of mouse macrophages with the zinc-containing dithiocarbamate ziram, a widely used fungicide in agriculture, caused a decrease in pro-caspase-1 and NLRP3 levels while not affecting ASC level. Ziram did not affect levels of pro-caspase-1 and NLRP3 mRNA, and no cleavage products of pro-caspase-1 including p10 subunit, which is an autocleavage product of pro-caspase-1, were detected, indicating that the decrease was associated with degradation of these proteins.

View Article and Find Full Text PDF

Body and excrement extracts from Dermatophagoides farinae were used to study stimulation of Toll-like receptors (TLRs). The excrement extract stimulated nuclear factor (NF)-κB-dependent reporter activity to an extent similar to lipopolysaccharide (LPS) in a mouse macrophage cell line, J774A.1, but the activity of the body extract was negligible.

View Article and Find Full Text PDF

We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds.

View Article and Find Full Text PDF

Strategies for the prevention of multiorgan dysfunction (MOD) in acetaminophen (APAP)-induced acute liver failure (ALF) are an unmet need. Our study tested the hypothesis that sterile inflammation induced by APAP in a mouse model would activate toll-like receptor 4 (TLR4) in the liver and extrahepatic organs and lead to the progression of ALF and MOD and that the administration of the novel TLR4 antagonist STM28 (a peptide formed of 17 amino-acids) would prevent liver injury and associated MOD. ALF and, subsequently, MOD were induced in TLR4-knockout (KO) mice (B6.

View Article and Find Full Text PDF

The ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to discriminate laboratory-derived antibiotic-resistant bacterial strains of known genetic origin was examined. A computer-based cluster analysis of spectral data successfully discriminated the majority of single- as well as multiple-antibiotic-resistant Escherichia coli strains examined. Cluster analysis of Staphylococcus aureus strains with different levels of novobiocin resistance showed that as the degree of resistance increased similarity to the wild-type strain decreased.

View Article and Find Full Text PDF

TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.

View Article and Find Full Text PDF

We evaluated the capability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to discriminate twelve Escherichia strains: E. blattae, E. fergusonii, E.

View Article and Find Full Text PDF

Urban air pollution, especially in developing countries, is a crucial environmental problem. Urban aerosols may contain various kinds of substances and induce harmful effects such as allergic diseases. Therefore, it is critical to clarify the biological effects of urban aerosols on human health.

View Article and Find Full Text PDF

The effects of the soluble forms of the endotoxin receptor molecules sMD-2 and sCD14 on bacterial growth were studied. When Escherichia coli and Bacillus subtilis were incubated at 37 degrees C for 18 hr with either sMD-2 or sCD14, growth of these bacteria was significantly inhibited as evaluated by viable cell counts and NADPH/NADH activity. A mutant of sCD14 (sCD14d57-64) lacking a region essential for LPS binding did not inhibit the growth of E.

View Article and Find Full Text PDF

Deoxynivalenol (DON) and nivalenol (NIV), trichothecene mycotoxins, are secondary metabolites produced by Fusarium fungi. Trichothecene mycotoxins cause immune dysfunction, thus leading to diverse responses to infection. The present study evaluated the effect of DON and NIV on nitric oxide (NO) production by RAW264 cells stimulated with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Endothelial cell injury/dysfunction is considered to play a critical role in the pathogenesis of severe sepsis and septic shock. Although it is considered that endothelial cell apoptosis is involved in endothelial injury/dysfunction, physiological involvement remains ambiguous since the induction of apoptosis requires the inhibition of endogenous apoptosis inhibitors. Here we show that caspase-3 activation, a biological indicator of apoptosis, is observed in response to lipopolysaccharide (LPS) stimulation even under the influence of endogenous apoptosis inhibitors, and that activated caspase-3 is rapidly released from human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria. It is a ligand for Toll-like receptor 4 (TLR4), which plays an essential role in innate immunity. Macrophages and dendritic cells exposed to LPS overproduce proinflammatory mediators, leading to septic shock.

View Article and Find Full Text PDF

IRAK-4 plays an essential role in Toll-like receptor (TLR)/IL-1 receptor signaling. However, its signaling and regulation mechanisms have remained elusive. We have reported previously that stimulation of TLR2, TLR4 or TLR9, but not TLR3, leads to downregulation of IRAK-4 protein.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) may potentially worsen infectious diseases because EDCs disturb human immune function by interfering with endocrine balance. To evaluate the influence of EDCs on the innate immune function of macrophages, we investigated the effects of 37 possible EDCs on lipopolysaccharide-induced activation of the IFN-beta promoter. Alachlor, atrazine, benomyl, bisphenol A, carbaryl, diethyl phthalate, dipropyl phthalate, kelthane, kepone, malathion, methoxychlor, octachlorostyrene, pentachlorophenol, nonyl phenol, p-octylphenol, simazine and ziram all inhibited the activation.

View Article and Find Full Text PDF

MyD88 and IL-1R-associated kinase 1 (IRAK-1) play crucial roles as adaptor molecules in signal transduction of the TLR/IL-1R superfamily, and it is known that expression of these proteins leads to the activation of NF-kappaB in a TNFR-associated factor 6 (TRAF6)-dependent manner. We found in this study, however, that a dominant-negative mutant of TRAF6, lacking the N-terminal RING and zinc-finger domain, did not inhibit IRAK-1-induced activation of NF-kappaB in human embryonic kidney 293 cells, although the TRAF6 mutant strongly suppressed the MyD88-induced activation. The dominant-negative mutant of TRAF6 did not affect the IRAK-1-induced activation, regardless of the expression level of IRAK-1.

View Article and Find Full Text PDF