Publications by authors named "Masashi Mizukami"

The mechanisms underlying the influence of the surface chemistry of inorganic materials on polymer structures and fracture behaviours near adhesive interfaces are not fully understood. This study demonstrates the first clear and direct evidence that molecular surface segregation and cross-linking of epoxy resin are driven by intermolecular forces at the inorganic surfaces alone, which can be linked directly to adhesive failure mechanisms. We prepare adhesive interfaces between epoxy resin and silicon substrates with varying surface chemistries (OH and H terminations) with a smoothness below 1 nm, which have different adhesive strengths by ~13 %.

View Article and Find Full Text PDF

Concentrated polymer brushes (CPBs) are known to exhibit excellent lubrication properties. However, the frictional behaviors of CPBs vary, depending on their preparation and operating conditions. In order to understand such complicated properties, it is necessary to determine their structures and correlate them with their properties, during shear motion.

View Article and Find Full Text PDF
Article Synopsis
  • Turmeric contains various health-benefiting compounds, with bisacurone being less studied compared to curcumin.
  • In a study, bisacurone was given to mice on a high-fat diet for two weeks, resulting in lower liver weight, reduced cholesterol and triglyceride levels, and decreased blood viscosity.
  • The compound also inhibited the production of pro-inflammatory cytokines and affected specific signaling pathways related to inflammation, suggesting its potential for reducing lipidemia and inflammation.
View Article and Find Full Text PDF

Lubricant performance can be improved using additives such as organic friction modifiers (OFMs) and is influenced by their conformation and properties in the space confined between the substrate surfaces, rendering the detailed property analysis of confined OFMs and lubricants a matter of high practical significance. To date, studies on fatty acids as confined OFMs have mainly focused on linear- and unsaturated-chain molecules, leaving branched-chain structures underexplored. To bridge this gap, we used resonance shear measurements in this study to probe the viscosity of two branched-chain C fatty acids (isostearic acid T and isostearic acid) confined between mica surfaces at different applied normal loads () and surface separation distances ().

View Article and Find Full Text PDF

We have successfully performed X-ray diffraction measurements of the liquids octamethylcyclotetrasiloxane (OMCTS, a quasi-spherical-shaped molecule) and -hexadecane (a normal alkane) confined between mica surfaces at surface separation distances ('s) from 500 nm to the hard-wall thickness (1.9 nm for OMCTS and 1.0 nm for hexadecane).

View Article and Find Full Text PDF

The orientational behavior of a smectic-A liquid crystal (4-cyano-4'-octylbiphenyl, 8CB) confined between mica surfaces as well as between silica surfaces with a nanometer scale thickness was investigated by synchrotron X-ray diffraction measurement. The crystallographic axes of two confining mica sheets were adjusted parallel to each other to induce the preferential orientation of 8CB molecules along their crystallographic axis. The silica surfaces, which were hydrophilic and amorphous and had nanometer level smoothness, were prepared on mica surfaces using a sputtering technique.

View Article and Find Full Text PDF

We employed surface forces and resonance shear measurement (RSM) for studying the structure and properties of typical concentrated polymer brushes (CPBs) of poly(methylmethacrylate) (PMMA) in toluene, which are known to show very low friction. The surface forces measured between the silica surfaces bearing PMMA brush layers showed a steric repulsive force at distances between the silica surfaces of less than ca. 1050 nm (Donset).

View Article and Find Full Text PDF

Resonance shear measurement (RSM), which we developed based on a surface force apparatus, can investigate the structuring, and rheological and tribological properties of confined liquids as a function of the surface separation distance (D) from several μm to zero with a nanometer resolution. Using RSM, we reported that the nanoconfined liquids, including commercial lubricants, exhibited properties quite different from the bulk phase. Mechanical modeling of the resonance system is necessary to quantitatively evaluate the properties of confined liquids and/or sheared interfaces.

View Article and Find Full Text PDF

The deformation of the interfaces between a soft material and hard material in contact plays an important role in the friction and lubrication between them. We recently reported that the elastic property of the contact interface dominated the friction of the interface between a flat polymer hydrogel [double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and ,-dimethylacrylamide] and a silica sphere [Ren , Soft Matter , 6192-6200 (2015)]. In this study, in order to quantitatively describe the dependence of the elastic response on the geometrical parameters of the deformed interfaces, we employed the resonance shear measurement (RSM) and investigated the deformation of the interfaces between a flat DN gel and silica spheres by varying the curvature radius ( = 18.

View Article and Find Full Text PDF

X-ray diffraction measurement at the SPring-8 synchrotron was employed to investigate the structures of two types of imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTF2]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), confined between silica surfaces by varying the surface separation distances of ca. 500 nm (bulk liquid), ca. 10 nm, and ca.

View Article and Find Full Text PDF

A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca.

View Article and Find Full Text PDF

We performed the resonance shear measurement (RSM) for evaluating the nanorheological and tribological properties of model lubricants, hexadecane and poly(α-olefin) (PAO), confined between iron surfaces. The twin-path surface forces apparatus (SFA) was used for determining the distance between the surfaces. The obtained resonance curves for the confined lubricants showed that the viscosity of the confined hexadecane and PAO increased due to liquid structuring when the surface separation (D) decreased to a value less than 24 and 20 nm, respectively.

View Article and Find Full Text PDF

The stereocomplex formation of poly(l,l-lactide) (PLLA) and poly(d,d-lactide) (PDLA) was selected in order to investigate the interaction of the two surfaces including hydrogen bonding and van der Waals interaction. Adhesion force measurement using surface force apparatus (SFA) equipped with an optical microscope was conducted on the PLLA and PDLA spin-coated films. The adhesion forces, Fad, phenomenologically followed the linear relation with the applied normal load, L.

View Article and Find Full Text PDF

To evaluate the friction properties of new lubrication systems, two types of ammonium-based ionic liquids (ILs), N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate ([DEME][BF4]) and N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]), were investigated by resonance shear measurements (RSM) and reciprocating type tribotests between silica (glass) surfaces. RSM revealed that an IL layer of ca. 2 nm in thickness was maintained between the silica surfaces under an applied load of 0.

View Article and Find Full Text PDF

The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components.

View Article and Find Full Text PDF

We used molecular dynamics simulations to investigate the effect of disorder of the hydroxylated amorphous silica surface on the structure of 8 nm IL films formed from two ionic liquids featuring the same cation 1-butyl-3-methyl-imidazolium or [BMIM], paired with bis(trifluoromethanesulphonyl)amide [NTF2] and tetrafluoroborate [BF4] anions. Several silica surfaces were modelled to estimate the effect of their atomic-scale configuration on the solid-liquid interface and the results are compared to those simulated on the crystalline cristobalite surface. Using strongly polar surfaces, we could also evaluate the response of the ILs to the electric field externally controlled or generated by charged defects in the silica film.

View Article and Find Full Text PDF

We report the effect of confinement on the electric field induced orientation of a nematic liquid crystal, 4-cyano-4'-hexylbiphenyl (6CB), between mica surfaces. The resonance shear measurement was employed for monitoring changes in the viscosity of 6CB at various surface separation distances (D) with and without an applied electric field. The viscosity depended on the surface separations, and the behaviour for D < ca.

View Article and Find Full Text PDF

We used molecular dynamics simulations to study the structure and shear dynamics of two ionic liquids (ILs) featuring the same cation 1-butyl-3-methyl-imidazolium or [BMIM], paired with bis(trifluoromethanesulphonyl)amide [NTF2] and tetrafluoroborate [BF4] anions, confined between two hydroxylated silica surfaces. The results demonstrate how the shape of IL molecules affects their layering structure at hydroxylated silica surfaces and how the layered structure of nanoconfined liquids determines their dynamical properties at the molecular level. When [BMIM][NTF2] is sheared, larger molecular fluctuations in the inner layers are required to stabilise the system, and the resulting dynamics is irregular.

View Article and Find Full Text PDF

We investigated interfacial water, formed by adsorption or phase separation (prewetting transition), on a silica surface in water-cyclohexane binary liquids using a combination of colloidal probe atomic force microscopy (AFM) and sum frequency generation (SFG) vibrational spectroscopy. At 33 ± 9 ppm water, the long-range attraction extending to 19.4 ± 2.

View Article and Find Full Text PDF

Two types of imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C(4)mim][NTF(2)]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BF(4)]), confined between silica surfaces were investigated by surface force apparatus (SFA)-based resonance shear measurements together with surface force measurements. The surface force profiles in the ILs showed oscillatory solvation forces below the characteristic surface separations: 10.0 nm for [C(4)mim][NTf(2)] and 6.

View Article and Find Full Text PDF

This paper describes a new physical model for resonance shear measurement. The resonance shear method developed by us provides a tool for investigating the rheological and tribological properties of liquids confined between two surfaces as a function of the surface distance from micrometer to zero (contact) with nanometer level resolution with high sensitivity and stability. The properties of the confined liquid can be quantitatively studied by analyzing the resonance curve using a physical model.

View Article and Find Full Text PDF

We have found that alcohols, carboxylic acids, and amides self-assemble into a unique molecular architecture, a hydrogen-bonded molecular macrocluster, when they are selectively adsorbed onto silica (glass and oxidized silicon) surfaces in nonpolar solvents such as cyclohexane. In our previous study, this phenomenon could be successfully applied to fabricate molecularly flat and defect-free nanofilms of several tens of nanometers thickness. In this study, we prepared a poly(N-isopropylacrylamide) [poly(NIPAAm)] film on the basis of in situ polymerization of a monomer macrocluster layer formed on silica surfaces and investigated how the molecular arrangement of the adsorbed NIPAAm monomers affects the efficiency of the polymerization of them.

View Article and Find Full Text PDF

We designed a new surface forces apparatus for measuring the interactions between two nontransparent substrates and/or in nontransparent liquids. The small displacement of a surface, the bottom one in this study, was measured by the two-beam (twin path) interferometry technique using the phase difference between the laser light reflected by the fixed mirror and that by the mirror on the back of the bottom surface unit. It is possible to determine the distance with a resolution of 1 nm in the working range of 5 microm.

View Article and Find Full Text PDF

The adsorption of phenol, an aromatic compound with a hydrogen-bonding group, onto a silica surface in cyclohexane was investigated by colloidal probe atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and adsorption isotherm measurements. ATR-FTIR measurements on the silica surface indicated the formation of surface macroclusters of phenol through hydrogen bonding. The ATR-FTIR spectra were also measured on the H-terminated silicon surface to observe the effect of the silanol groups on the phenol adsorption.

View Article and Find Full Text PDF

Recently, we have succeeded in identifying the structure of the adsorption layer of ethanol on a silica surface in cyclohexane to be a hydrogen-bonded linear aggregate (polymer), which we call a surface molecular macrocluster. In this work, we studied the effect of the miscibility of liquids on the formation of the surface molecular macroclusters for confirming that this is a surface induced phenomenon. We investigated the interaction and the structure of methanol adsorbed on a silica surface in methanol-cyclohexane binary liquids by a combination of colloidal probe atomic force microscopy, adsorption excess isotherm measurement, and FTIR spectroscopy using the attenuated total reflection (ATR) mode, and compared the results with those of the ethanol-cyclohexane and 1-propanol-cyclohexane binary liquids.

View Article and Find Full Text PDF