We present a sessile droplet manipulation platform that enables the formation and transport of a droplet on a light-absorbing surface via local laser-beam irradiation. The mechanism relies on solutocapillary Marangoni flow arising from a concentration gradient in a binary mixture liquid. Because the mixture is strongly confined in a two-dimensional slit with a spacing of a few micrometers, the wetting film is stably sustained, enabling the rapid formation, deformation, and transport of a sessile droplet.
View Article and Find Full Text PDFWe attempted to modify the monoclinic-rutile structural phase transition temperature () of a VO thin film in situ through stress caused by amorphous-crystalline phase change of a chalcogenide layer on it. VO films on C- or R-plane AlO substrates were capped by GeSbTe (GST) films by means of rf magnetron sputtering. of the VO layer was evaluated through temperature-controlled measurements of optical reflection intensity and electrical resistance.
View Article and Find Full Text PDFOptical techniques have been actively studied for manipulating nano- to microsized objects. However, long-range attraction and rapid transport of particles within thin quasi-two-dimensional systems are difficult because of the weak thermophoretic forces. Here, we introduce an experimental system that can rapidly generate quasi-two-dimensional colloidal crystals in deionized water, sandwiched between two hard plates.
View Article and Find Full Text PDFThe functionality of a pulse timing discriminator, which is commonly required in optical communication systems and artificial neuromorphic engineering, was implemented into chalcogenide phase-change materials. GeSbTe (GST) and GeCuTe (GCT), which exhibit opposite refractive index behavior in their respective crystalline and amorphous phases, were employed. A GST/GCT double layer enabled the order of arrival of two counter-propagating femtosecond pulses to be encoded as a difference in the degree of amorphization of the GCT layer, i.
View Article and Find Full Text PDFWe attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO thin film grown on a rutile TiO(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2016
We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.
View Article and Find Full Text PDFBecause of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking.
View Article and Find Full Text PDFIn order to develop a biosensing system with waveguide-mode sensor, fabrication of a biosensing interface on the silica surface of the sensing chip was carried out using triethoxysilane derivatives with anti-leptin antibody. Triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties were synthesized to immobilize the antibody and to suppress nonspecific adsorption of proteins, respectively. The chip modified with triethoxysilane derivatives bearing oligoethylene glycol moiety suppressed nonspecific adsorption of proteins derived from human serum effectively by rinse with PBS containing surfactant (0.
View Article and Find Full Text PDFIn order to scrutinize potential of trialkoxysilanes to form close-packed monolayer, surface modification of silicon oxide was carried out with the trialkoxysilanes bearing a ferrocene moiety for analysis by electrochemical methods. As it was found that hydrogen-terminated silicon reacts with trialkoxysilane through natural oxidation in organic solvents, where the silicon oxide layer is thin enough to afford conductivity for electrochemical analysis, hydrogen-terminated silicon wafer was immersed in trialkoxysilane solution for surface modification without oxidation treatment. Cyclic voltammetry measurements to determine surface concentrations of the immobilized ferrocene-silane on silicon surface were carried out with various temperature, concentration, solvent, and molecular structure, while the blocking effect in the cyclic voltammogram was investigated to obtain insight into density leading to the close-packed layer.
View Article and Find Full Text PDFWe report a multi-mode interference-based optical gate switch using a Ge(2)Sb(2)Te(5) thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.
View Article and Find Full Text PDFWe have proposed a novel grating-based optical reflection switch using a phase change material (PCM). The device switches on/off light or shifts the light propagation direction by switching the PCM grating between its amorphous and crystalline states. Thus, the switching status is non-volatile and the device is promising for realizing low power consumption.
View Article and Find Full Text PDFOptical features of a PtO2 mask layer in a superresolution near-field structure are investigated in detail by use of the Z-scan technique. The high photothermal stability of the PtO2 mask is revealed, and a phenomenon in which laser-irradiated PtO2 decomposes to yield Pt particles is confirmed. We also find a physical change in the mask layer that accompanies the chemical decomposition.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.