Publications by authors named "Masashi Koka"

Particle-induced gamma-ray emission (PIGE), which measures prompt gamma rays at 428 keV from B (p, p'γ) Be, was used to confirm the boron distribution within 2hr-BPA-exposed cells. Distribution images of potassium, phosphate, and boron and the whole spectrum showed the ratios of boron counts to total (%) as follows: control group: 1.35 ± 0.

View Article and Find Full Text PDF

Objectives: Studies have shown that inhaled mine dust, such as asbestos, can be translocated to various organs including the lymph nodes. Recently, we have established a protocol that enables us to identify inhaled elements using paraffin embedded lung specimens by in-air microparticle-induced X-ray emission (micro-PIXE). However, little research has examined the concentration of these inhaled fibers in various organs or the mechanisms of their translocation.

View Article and Find Full Text PDF

The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min.

View Article and Find Full Text PDF

The cellular mechanisms involved in the development of silicosis have not been fully elucidated. This study aimed to examine influence of silica-induced lung injury on autophagy. Suspensions of crystalline silica particles were administered transnasally to C57BL/6j mice.

View Article and Find Full Text PDF

Purpose: The effect of alginate-hyaluronate microcapsules that release carboplatin in response to radiation was improved by adding ascorbic acid (AA).

Materials And Methods: Four measures of the effectiveness of the microcapsules were evaluated: 1) release of carboplatin in response to radiation in vitro and in vivo; 2) detectability of their accumulation by computed tomography (CT) in vivo; 3) enhancement of antitumor effects in vivo; and 4) reduction of adverse effects in vivo.

Results: There were significant increases in the rupture of microcapsules by adding AA in vitro.

View Article and Find Full Text PDF

To clarify the intra tumor distribution of gadlinium containing fullerene (Gd@C82), micro particle induced X-ray emission (Micro-PIXE) analysis were performed. The tumor bearing BALB/c mice were injected Gd@C82 and subcutaneous tumors were taken from 48h after the intravenous injection. Using the Micro-PIXE method, we could visualize Gd intra tumor distribution.

View Article and Find Full Text PDF

A simple and sensitive sub-micrometer scale method for visualization of the dose distribution of a focused proton beam (FPB) was developed, taking advantage of the formation of a bulky crosslinked structure induced by FPB irradiation of a common polymer and cross-linker, polyacrylic acid-N, N'-methylene bisacrylamide, blend film surface. The irradiated part of the film swelled as a peak, and the height of swelling increased with increasing FPB fluence. The film was used as a proton beam-sensitive polymer film by analysis of the irradiated film surface using atomic force microscopy.

View Article and Find Full Text PDF

Interstitial pneumonia develops in association with inhaled particles. In-air microparticle induced X-ray emission (in-air micro) analysis was previously employed to assess the spatial distribution and content of particles in surgical lung biopsy specimens. The aim of this study was to assess the efficacy of in-air micro-analysis for transbronchial lung biopsy specimens in patients with or without occupational exposure.

View Article and Find Full Text PDF

Background: Pulmonary alveolar proteinosis (PAP) is a rare disease occurred by idiopathic (autoimmune) or secondary to particle inhalation. The in-air microparticle induced X-ray emission (in-air micro-PIXE) system performs elemental analysis of materials by irradiation with a proton microbeam, and allows visualization of the spatial distribution and quantitation of various elements with very low background noise. The aim of this study was to assess the secondary PAP due to inhalation of harmful particles by employing in-air micro-PIXE analysis for particles and intracellular iron in parafin-embedded lung tissue specimens obtained from a PAP patient comparing with normal lung tissue from a non-PAP patient.

View Article and Find Full Text PDF