Wound healing of partially incised Arabidopsis inflorescence stems constitutes cell proliferation that initiates mainly in pith tissues about 3 d after incision and the healing process that completes in about 7 d. Although the initiation mechanisms of cell proliferation have been well documented, the suppression mechanisms remain elusive. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases well known as proteolytic enzymes in animal system functioning in extracellular matrix remodeling during physiological and pathological processes, including tissue differentiation, growth, defense, wound healing and control of cancer growth.
View Article and Find Full Text PDFRoot development is essential for plant survival. The lack of carotenoid biosynthesis in the phytoene desaturase 3 (pds3) mutant results in short primary roots (PRs) and reduced lateral root formation. In this study, we showed that short-term inhibition of PDS by fluridone suppresses PR growth in wild type, but to a lesser extent in auxin mutants of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPlants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion.
View Article and Find Full Text PDFIn woodland strawberry, a brassinosteroid biosynthesis inhibitor propiconazole induced typical brassinosteroid-deficient phenotypes and decreased female fertility due to attenuated female gametophyte development. Brassinosteroids (BRs) play roles in various aspects of plant development. We investigated the physiological roles of BRs in the woodland strawberry, Fragaria vesca.
View Article and Find Full Text PDFJasmonic acid (JA) regulates plant growth, development and stress responses. Coronatine insensitive 1 (COI1) and jasmonate zinc-finger inflorescence meristem-domain (JAZ) proteins form a receptor complex for jasmonoyl-l-isoleucine, a biologically active form of JA. Three COIs (OsCOI1a, OsCOI1b and OsCOI2) are encoded in the rice genome.
View Article and Find Full Text PDFPlants have the regenerative ability to reconnect cut organs, which is physiologically important to survive severe tissue damage. The ability to reconnect organs is utilized as grafting to combine two different individuals. Callus formation at the graft junction facilitates organ attachment and vascular reconnection.
View Article and Find Full Text PDFL-3,4-dihydroxyphenylalanine (L-DOPA) is one of the important secondary metabolites of plants and has been used for various purposes, such as in clinical treatment for Parkinson's disease and dopamine-responsive dystonia. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin; the L-DOPA synthesis pathway is similar to that in mammals. L-DOPA acts as an allelochemical, has an important role in several biological processes, such as stress response and metabolism, in plants.
View Article and Find Full Text PDFThe spores of , cultured in the dark, form a filamentous structure called protonema. Earlier studies have shown that gibberellin (GA) induces protonema elongation, along with antheridium formation, on the protonema. In this study, we have performed detailed morphological analyses to investigate the roles of multiple phytohormones in antheridium formation, protonema elongation, and prothallus formation in .
View Article and Find Full Text PDFCarotenoids are photosynthetic pigments and hydrophobic antioxidants that are necessary for the survival of photosynthetic organisms, including the microalga . In the present study, we identified an uncharacterized gene encoding the β-carotene synthetic enzyme lycopene cyclase (EgLCY) and discovered a relationship between EgLCY-mediated carotenoid synthesis and the reactive oxygen species (ROS) scavenging system ascorbate-glutathione cycle. The cDNA sequence was obtained homology searching transcriptome data.
View Article and Find Full Text PDFLaser microdissection (LMD) is used for isolating specific regions or single cells from a wide variety of tissue samples under direct microscopic observation. The LMD method enables the harvest of the cells of interest in a region or specific cells for several analyses, such as DNA/RNA analysis, proteomics, metabolomics, and other molecular analyses. Currently, LMD is used to study various biological events at the tissue or cellular level; it has been used in a wide range of research fields.
View Article and Find Full Text PDFWounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction.
View Article and Find Full Text PDFANAC071 and its homolog ANAC096 are plant-specific transcription factors required for the initiation of cell division during wound healing in incised Arabidopsis flowering stems and Arabidopsis hypocotyl grafts; however, the mechanism remains mostly unknown. In this study, we showed that wound-induced cambium formation involved cell proliferation and the promoter activity of TDR/PXY (cambium-related gene) in the incised stem. Prior to the wound-induced cambium formation, both ANAC071 and ANAC096 were expressed at these sites.
View Article and Find Full Text PDFPlant grafting is conducted for fruit and vegetable propagation, whereby a piece of living tissue is attached to another through cell-cell adhesion. However, graft compatibility limits combinations to closely related species, and the mechanism is poorly understood. We found that is capable of graft adhesion with a diverse range of angiosperms.
View Article and Find Full Text PDFJasmonic acid and RAP2.6L are induced upon wounding but are not involved in cell proliferation during healing in Arabidopsis hypocotyls. Plants produce jasmonic acid in response to wounding, but its role in healing, if any, has not been determined.
View Article and Find Full Text PDFRecovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth.
View Article and Find Full Text PDFBackground: Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E.
View Article and Find Full Text PDFThe plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L.
View Article and Find Full Text PDFEndogenous brassinosteroids (BRs) in non-flowering land plants were analyzed. BRs were found in a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), lycophytes (Selaginella moellendorffii and S. uncinata) and 13 fern species.
View Article and Find Full Text PDFWhen wounding or grafting interrupts the original connection of plant tissue, cell proliferation is induced and the divided tissue is reunited. Previous studies suggested that gibberellin derived from the cotyledon is required for tissue reunion in cucumber and tomato incised hypocotyls, and tissue reunion of Arabidopsis incised flowering stems is controlled by auxin. Differences in the hormone requirements of the tissue reunion process between Arabidopsis and cucumber might be due to differences in organs or species.
View Article and Find Full Text PDFRice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves.
View Article and Find Full Text PDFBackground: Euglena gracilis, a unicellular phytoflagellate within Euglenida, has attracted much attention as a potential feedstock for renewable energy production. In outdoor open-pond cultivation for biofuel production, excess direct sunlight can inhibit photosynthesis in this alga and decrease its productivity. Carotenoids play important roles in light harvesting during photosynthesis and offer photoprotection for certain non-photosynthetic and photosynthetic organisms including cyanobacteria, algae, and higher plants.
View Article and Find Full Text PDFInteractions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research.
View Article and Find Full Text PDFOne week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071.
View Article and Find Full Text PDF