Publications by authors named "Masaru Yamanaka"

Association-controllable hemoprotein assemblies were constructed from a fusion protein containing two c-type cytochrome units using 3D domain swapping. The hemoprotein assembly exhibited a dynamic exchange between cyclic and linear structures and could be regulated by carbon monoxide (CO) and imidazole binding.

View Article and Find Full Text PDF

The peroxidase activity of cytochrome (cyt) increases when Met80 dissociates from the heme iron, which is related to the initial cyt membrane permeation step of apoptosis. Met80-dissociated cyt can form an oxygenated species. Herein, resonance Raman spectra of Met80-depleted horse cyt (M80A cyt ) were analyzed to elucidate the heme ligand properties of Met80-dissociated cyt .

View Article and Find Full Text PDF

Amyloid fibril formation of cytochrome is spatially and temporally controlled with a combined method of disulfide bond cross-linking of cysteine-introduced variants and optical trapping, identifying that the structural change in the region containing Ala83 is essential for the amyloid fibril formation.

View Article and Find Full Text PDF

Various factors, such as helical propensity and hydrogen bonds, control protein structures. A frequently used model protein, myoglobin (Mb), can perform 3D domain swapping, in which the loop at the hinge region is converted to a helical structure in the dimer. We have previously succeeded in obtaining monomer-dimer equilibrium in the native state by introducing a high α-helical propensity residue, Ala, to the hinge region.

View Article and Find Full Text PDF

Various proteins form nanostructures exhibiting unique functions, making them attractive as next-generation materials. Ferritin is a hollow spherical protein that incorporates iron ions. Here, we found that hydrogels are simply formed from concentrated apoferritin solutions by acid denaturation and subsequent neutralization.

View Article and Find Full Text PDF

Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences.

View Article and Find Full Text PDF

Cytochrome c' is a nitric oxide (NO)-binding heme protein found in Gram negative bacteria. The thermal stability of psychrophilic Shewanella violacea cytochrome c' (SVCP) is lower than those of its homologues from other 2 psychrophilic Shewanella species, indicating that thermal destabilization mechanism for low-temperature adaptation accumulates in SVCP. In order to understand this mechanism at the amino acid level, here the stability and function of SVCP variants, modeled using the 2 homologues, were examined.

View Article and Find Full Text PDF

Protein oligomers have gained interest, owing to their increased knowledge in cells and promising utilization for future materials. Various proteins have been shown to 3D domain swap, but there has been no domain swapping report on a blue copper protein. Here, we found that azurin from Alcaligenes xylosoxidans oligomerizes by the procedure of 2,2,2-trifluoroethanol addition to Cu(i)-azurin at pH 5.

View Article and Find Full Text PDF

Many c-type cytochromes (cyts) can form domain-swapped oligomers. The positively charged Hydrogenobacter thermophilus (HT) cytochrome (cyt) c forms domain-swapped oligomers during expression in the Escherichia coli (E. coli) expression system, but the factors influencing the oligomerization remain unrevealed.

View Article and Find Full Text PDF

During domain swapping, proteins mutually interconvert structural elements to form a di-/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain-swapping formation by loop deletion and insertion of a polyproline rod.

View Article and Find Full Text PDF

The Met80-heme iron bond of cytochrome c (cyt c) is cleaved by the interaction of cyt c with cardiolipin (CL) in membranes. The Met80 dissociation enhances the peroxidase activity of cyt c and triggers cyt c release from mitochondrion to the cytosol at the early stage of apoptosis. This paper demonstrates the selective oxidation of Met80 for the reaction of ferric cyt c with a peroxide, meta-chloroperbenzoic acid (mCPBA), in the presence of CL-containing liposomes by formation of a ferryl species (Compound I).

View Article and Find Full Text PDF

Highly-ordered protein structures have gained interest for future uses for biomaterials. Herein, we constructed a building block protein (BBP) by the circular permutation of the hyperthermostable Aquifex aeolicus cytochrome (cyt) c , and assembled BBP into a triangle-shaped trimer and a tetrahedron. The angle of the intermolecular interactions of BBP was controlled by cleaving the domain-swapping hinge loop of cyt c and connecting the original N- and C-terminal α-helices with an α-helical linker.

View Article and Find Full Text PDF

AVCP cytochrome c' from mesophilic Allochromatium vinosum exhibits lower stability than a thermophilic counterpart, Hydrogenophilus thermoluteolus cytochrome c' (PHCP), in which the six specific amino acid residues that are not conserved in AVCP are responsible for its stability. Here we measured the stability of AVCP variants carrying these specific residues instead of the original AVCP ones. Among the six single AVCP variants, all of which formed a dimeric structure similar to that of the wild-type, three were successfully stabilized compared with the wild-type, while one showed lower stability than the wild-type.

View Article and Find Full Text PDF

The design of protein oligomers with multiple active sites has been gaining interest, owing to their potential use for biomaterials, which has encouraged researchers to develop a new design method. Three-dimensional domain swapping is the unique phenomenon in which protein molecules exchange the same structural region between each other. Herein, to construct oligomeric heme proteins with different active sites by utilizing domain swapping, two c-type cytochrome-based chimeric proteins have been constructed and the domains swapped.

View Article and Find Full Text PDF

Unlabelled: Thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c' (AVCP), which has a homo-dimeric structure and ligand-binding ability. To understand the thermal stability mechanism and ligand-binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo-dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.

View Article and Find Full Text PDF

Shewanella species are widely distributed in sea, brackish, and fresh water areas, growing psychrophilically or mesophilically, and piezophilically or piezo-sensitively. Here, membrane-bound 5'-nucleotidases (NTases) from deep-sea Shewanella violacea and brackish water Shewanella amazonensis were examined from the aspect of NaCl tolerance to gain an insight into protein stability against salt. Both NTases were single polypeptides with molecular masses of ~59 kDa, as determined on mass spectroscopy.

View Article and Find Full Text PDF

The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO.

View Article and Find Full Text PDF

Knowledge on domain swapping in vitro is increasing, but domain swapping may not occur regularly in vivo, and its information in cells is limited. Herein, we show that domain-swapped oligomers of a thermostable c-type cytochrome, Hydrogenobacter thermophilus cyt c552, are formed in E. coli which expresses cyt c552.

View Article and Find Full Text PDF

High-order oligomers of Hydrogenobacter thermophilus cytochrome c552 increased with the insertion of more Gly residues between Ala18 and Lys19 at the major hinge loop of the wild-type protein. N-Terminal domain swapping and C-terminal domain swapping were elucidated by using X-ray crystallography for the mutant with the insertion of three Gly residues at the hinge loop.

View Article and Find Full Text PDF

Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555 ) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310 -α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310 -α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53-Lys57) was different among all four protomers.

View Article and Find Full Text PDF

Double stranded DNA was cleaved oxidatively by incubation with oxygenated myoglobin, and Lys96Cys sperm whale myoglobin in its stable ferric form functioned as an artificial nuclease under air by formation of an oxygenated species, owing to electron transfer from the SH group of the introduced cysteine to the heme.

View Article and Find Full Text PDF

Apo-cytochomes c without heme are usually unstructured. Here we showed that apo-form of thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) was a monomeric protein with high helix content. Apo-PHCP was thermally stable, possibly due to the hydrophobic residues and ion pairs.

View Article and Find Full Text PDF

Many proteins, including cytochrome c (cyt c), have been shown to form domain-swapped oligomers, but the factors governing the oligomerization process remain unrevealed. We obtained oligomers of cyt c by refolding cyt c from its acid molten globule state to neutral pH state under high protein and ion concentrations. The amount of oligomeric cyt c obtained depended on the nature of the anion (chaotropic or kosmotropic) in the solution: ClO4(-) (oligomers, 11% ± 2% (heme unit)), SCN(-) (10% ± 2%), I(-) (6% ± 2%), NO3(-) (3% ± 1%), Br(-) (2% ± 1%), Cl(-) (2% ± 1%), and SO4(2-) (3% ± 1%) for refolding of 2 mM cyt c (anion concentration 125 mM).

View Article and Find Full Text PDF

Sequence analysis indicated that thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) and its mesophilic homolog, Allochromatium vinosum cytochrome c' (AVCP), closely resemble each other in a phylogenetic tree of the cytochrome c' family, with 55% sequence identity. The denaturation temperature of PHCP was 87 °C, 35 °C higher than that of AVCP. Furthermore, PHCP exhibited a larger enthalpy change value during its thermal denaturation than AVCP.

View Article and Find Full Text PDF

Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear.

View Article and Find Full Text PDF