The development of bioorthogonal reactions is expected to propel further advances in chemical biology. In this study, we demonstrate Staudinger-Diels-Alder (SDA) ligation as a candidate for a new bioorthogonal reaction. This reaction ligates two molecules via strong C-C bonds at room temperature.
View Article and Find Full Text PDFPolarity-responsive luminophores (PRLs), whose emission properties change in response to the polarity of the surrounding environment, are used for the fluorescence sensing of intracellular environments and various chemical compounds. Herein, we propose a concept called nonpolar selective emission (NPSE) for the development of a new PRL family. Unlike the conventional emission of PRLs, the NPSE luminophore can switch to a completely non-emissive state upon a slight increase in solvent polarity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
The recent expansion of photoredox catalysis into chemical biology has underscored the importance of photochemistry, attracting the attention of many researchers. On the other hand, as conventional photoredox catalysts were developed for organic synthesis, there is a necessity to develop biocompatible photoredox catalysts. Here, we show a water-soluble and water-compatible near-infrared (NIR) photoredox catalyst, coerulein B (CB).
View Article and Find Full Text PDFWe describe a π-topological transformation-based synthetic method for the preparation of a new type of near-infrared (NIR)-emissive rhodamine dye called Polymethine-embedded Rhodamine Fluorophore (PeR Fluor). In contrast to conventional NIR-emissive dyes that require tedious synthetic steps and/or a high cost, linear fully π-conjugated PeR Fluor can be regioselectively prepared in one step by mixing different nucleophiles with ABPXs, a family of rhodamines with a cross-conjugated structure. PeR Fluor exhibits bright NIR fluorescence emission and high photostability owing to the cooperative π-electron system of rhodamines and polymethine scaffolds.
View Article and Find Full Text PDFTuning the electrophilicities of Michael acceptors is important for the development of targeted covalent drugs. To this end, the electronic effects of electrophilic structures have been well investigated, but not the steric effects. In this work, we synthesized ten α-methylene cyclopentanones (MCPs), screened them for NF-κB inhibitory activity, and analyzed their conformations.
View Article and Find Full Text PDFThe fluorescence spectral fingerprint, also known as the excitation-emission matrix (EEM), is used to assess and visualize therapeutic drug photodegradation in combination with chemometrics. Examination of EEM-parallel factor analysis (PARAFAC) data showed that an individual component was easily separated from a mixture of photogenerated products of a heterocyclic pharmacophore, in this case, phenothiazine drugs (PTZs). Detailed investigations of both structure-EEM relationships and kinetics revealed that the components extracted from EEM-PARAFAC could be quantitatively attributed to such photogenerated products as phenothiazine sulfoxide and carbazole derivatives.
View Article and Find Full Text PDFHerein, a new NIR photoredox catalyst, bridged eosin Y (BEY), has been developed. Its detailed structure and NIR optical properties are clarified by using various spectroscopic methods, X-ray single-crystal structure analysis and DFT calculations. In addition, we demonstrate the photoreaction in colored reagents and high-concentration suspensions to show the advantage of NIR photoredox-catalyzed reactions.
View Article and Find Full Text PDFUse of 3-azidoindoles in organic synthesis remains a difficult task owing to their instabilities. Herein, we report a general and concise approach for tackling this problem by using 3-azidoindole surrogates. The surrogates are bench-stable, presumably due to the observed intramolecular O-N bonding.
View Article and Find Full Text PDFSuperior pH-responsive molecules are required for the development of functional materials applicable to advanced molecular technologies. Despite having been widely developed, many rhodamine-based pH-responsive molecules exhibit a single configurational switch for "turn-on". Herein, we report a new type of rhodamine-based pH-responsive molecule with multi-configurational switches displaying stable two-step structural and color conversion in response to pH.
View Article and Find Full Text PDFAn ambient-stable radical cation of a Thiele's hydrocarbon derivative has been synthesized and its properties have been explored using a combined experimental and computational approach. The radical cation exhibited several intense near-infrared absorption bands and its solution-processed thin films showed high electrical conductivity at room temperature.
View Article and Find Full Text PDFAn unprecedented boron-containing fluorophore, π-extended cis-stilbene, obtained via alkynylboration reaction of alkynamide is reported. Boron-containing π-extended cis-stilbenes emit fluorescence with high quantum yields in the solid state and exhibit aggregation-induced emission enhancement. The broad substrate scope of the alkynylboration reaction offers facile access to electronically diverse structures, enabling fine-tuning of light absorption/emission characteristics.
View Article and Find Full Text PDFWe report synthesis and characterization of near-infrared (NIR)-absorbing/emitting Thiele's hydrocarbon derivatives, in which four aryl groups are bridged to a quinodimethane skeleton. The quinoid structure of the bridged-tetra-aryl- p-quinodimethanes (BTAQs) was confirmed by spectroscopic, X-ray crystallographic, and computational methods. Although quinodimethane derivatives with a small HOMO-LUMO energy gap often exhibit biradical character, BTAQs showed no biradical character.
View Article and Find Full Text PDFWhile investigating the unique optical properties of aminobenzopyranoxanthenes (ABPXs), organic fluorescent dyes with the fusion of two rhodamines, we have found that the spirolactone form of ABPXs exhibited solvatochromic fluorescence in organic solvents. Detailed spectrophotometric and theoretical analyses showed that the solvatochromic fluorescence of ABPXs originated from the photo-excited charge separation in solvents of different dipolarities. Further studies revealed that fluorescent nanoaggregates were also formed in highly concentrated solution.
View Article and Find Full Text PDFMechanochromic organic molecules (MOMs) that exhibit a large difference of fluorescence wavelength between two states have important potential applications, but few such compounds are known. Here, we report a new MOM, cis-ABPX01(0), which shows switchable near-IR and blue fluorescence responses. Detailed spectrophotometric and single-crystal X-ray analyses revealed that the near-IR fluorescence is attributable to fluorescence from slip-stacked dimeric structures in crystals, while the blue fluorescence is attributable to fluorescence from the monomer.
View Article and Find Full Text PDFNew derivatives of aminobenzopyrano-xanthene (ABPX) dyes have been designed and synthesized with high fluorescence quantum yields in the visible and far-red regions. It was kinetically demonstrated that the structurally rigid conjugation of the xanthene moiety, which is closely related to the reduction of the nonradiative deactivation process, is an effective molecular design for the drastic enhancement of fluorescence emission efficiency.
View Article and Find Full Text PDF