Publications by authors named "Masaru Mitsui"

To evaluate the precise role of sphingomyelin synthase 2 (SMS2) in sphingomyelin (SM) metabolism and their anti-inflammatory properties, we analyzed species of major SM and ceramide (Cer) (18:1, 18:0 sphingoid backbone, C14 - C26 N-acyl part) in SMS2 knockout and wild-type mouse plasma and liver using HPLC-MS. SMS2 deficiency significantly decreased very long chain SM (SM (d18:1/22:0) and SM (d18:1/24:0 or d18:0/24:1)) and increased very long chain Cer (Cer (d18:1/24:0 or d18:0/24:1) and Cer (d18:1/24:1)), but not long chain SM (SM (d18:1/16:0), SM (d18:1/18:0 or d18:0/18:1) and SM (d18:1/18:1)) in plasma. To examine the effects of SM on inflammation, we studied the role of very long chain SM in macrophage activation.

View Article and Find Full Text PDF

Lipid microdomains or caveolae, small invaginations of plasma membrane, have emerged as important elements for lipid uptake and glucose homeostasis. Sphingomyelin (SM) is one of the major phospholipids of the lipid microdomains. In this study, we investigated the physiological function of sphingomyelin synthase 2 (SMS2) using SMS2 knock-out mice, and we found that SMS2 deficiency prevents high fat diet-induced obesity and insulin resistance.

View Article and Find Full Text PDF

Background: Nonviral gene transfer generally suffers from short-term expression of transgenes. We have previously demonstrated that plasmids with reduced CpG content exhibited a more prolonged expression of murine interferon (IFN)-beta or IFN-gamma, which was effective in inhibiting metastatic tumor growth. A further extension of the duration of transgene expression could be achieved by controlling the number and location of CpG motifs in plasmid DNA.

View Article and Find Full Text PDF

Plasmid DNA (pDNA) expressing mouse interferon (IFN)-beta or IFN-gamma (pCMV-Mu beta and pCMV-Mu gamma, respectively) has been shown to be effective in inhibiting the growth of colon carcinoma CT-26 cells in the liver (Kobayashi et al., Molecular Therapy 2002;6:737-44). The therapeutic effect of such IFN gene transfer could be significantly increased by the sustained expression of IFNs.

View Article and Find Full Text PDF