Publications by authors named "Masaru Hojo"

Termites have an elaborate social system that involves cooperation and division of labour among colony members. Although this social system is regulated by chemical signals produced in the colony, it remains unclear how these signals are perceived by other members. Signal transduction is well known to be triggered by the reception of odorant molecules by some binding proteins in the antennae, after which, a signal is transmitted to chemosensory receptors.

View Article and Find Full Text PDF

Background: Division of labour (DOL) is ubiquitous across biological hierarchies. In eusocial insects, DOL is often characterized by age-related task allocation, but workers can flexibly change their tasks, allowing for DOL reconstruction in fluctuating environments. Behavioural change driven by individual experience is regarded as a key to understanding this task flexibility.

View Article and Find Full Text PDF

Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants.

View Article and Find Full Text PDF
Article Synopsis
  • Fungi in the genus discussed are symbiotic with termite species that cultivate fungi, specifically in the Ryukyu Archipelago, Japan.
  • Researchers identified three rhizogenic species and found two mycelial genetic groups (types A and B) in termite nests.
  • The study linked basidioma specimens with type B mycelia in one clade, while type A mycelia formed a separate clade, suggesting the need for renaming certain Japanese specimens based on these findings.
View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on the genome, transcriptome, and methylome of the Japanese subterranean termite, revealing that gene duplication is crucial for social evolution in these insects.
  • * Specific duplicated genes related to social functions, such as chemical communication and social immunity, show varying expression patterns linked to different termite castes, suggesting that gene duplication aids in developing specialized roles within their social system.
View Article and Find Full Text PDF

The hallmark of eusocial insects, honeybees, ants, and termites, is division of labor between reproductive and non-reproductive worker castes. In addition, environmental adaption and ecological dominance are also underpinned by symbiotic associations with beneficial microorganisms. Microbial symbionts are generally considered to be maintained in an insect colony in two alternative ways: shared among all colony members or inherited only by a specific caste.

View Article and Find Full Text PDF

Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants.

View Article and Find Full Text PDF

uses basiconic antennal sensilla (s. basiconica) to sense a colony-specific blend of species-specific cuticular hydrocarbons (CHCs). The inner portion of the s.

View Article and Find Full Text PDF

Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents.

View Article and Find Full Text PDF

In the evolutionarily-derived termite subfamily Nasutitermitinae (family Termitidae), soldiers defend their nestmates by discharging polycyclic diterpenes from a head projection called the "nasus." The diterpenes are synthesised in the frontal gland from the precursor geranylgeranyl diphosphate (GGPP), which is generally used for post-translational modification of proteins in animals. In this study, we constructed a comprehensive gene catalogue to search for genes involved in the diterpene biosynthesis by assembling RNA sequencing reads of Nasutitermes takasagoensis, identifying eight gene copies for GGPP synthase (GGPPS).

View Article and Find Full Text PDF

Ants are known to use a colony-specific blend of cuticular hydrocarbons (CHCs) as a pheromone to discriminate between nestmates and non-nestmates and the CHCs were sensed in the basiconic type of antennal sensilla (). To investigate the functional design of this type of antennal sensilla, we observed the ultra-structures at 2D and 3D in the Japanese carpenter ant, , using a serial block-face scanning electron microscope (SBF-SEM), and conventional and high-voltage transmission electron microscopes. Based on the serial images of 352 cross sections of SBF-SEM, we reconstructed a 3D model of the sensillum revealing that each houses > 100 unbranched dendritic processes, which extend from the same number of olfactory receptor neurons (ORNs).

View Article and Find Full Text PDF

Partner discrimination is crucial in mutualistic interactions between organisms to counteract cheating by the partner. Trophobiosis between ants and aphids is a model system of such mutualistic interaction. To establish and maintain the mutualistic association, ants need to correctly discriminate mutualistic aphids.

View Article and Find Full Text PDF
Article Synopsis
  • dRYamides-1 and -2 are new ligands for a neuropeptide receptor in fruit flies (Drosophila melanogaster) and have been linked to feeding behavior regulation.
  • Injection of dRYamide-1 suppresses the proboscis extension reflex (PER), an early feeding behavior, in blowflies (Phormia regina), with specific cell localization observed in the brain.
  • Further studies show that while dRYamides-1 and -2 did not significantly alter sucrose intake volume, dRYamide-1 reduced responsiveness of sugar receptor neurons, indicating that these peptides lower feeding motivation by partially desensitizing these neurons.
View Article and Find Full Text PDF

Chemical communication is essential for the coordination of complex organisation in ant societies. Recent comparative genomic approaches have revealed that chemosensory genes are diversified in ant lineages, and suggest that this diversification is crucial for social organisation. However, how such diversified genes shape the peripheral chemosensory systems remains unknown.

View Article and Find Full Text PDF

Mutualistic interactions typically involve the exchange of different commodities between species. Nutritious secretions are produced by a number of insects and plants in exchange for services such as defense. These rewards are valuable metabolically and can be used to reinforce the behavior of symbiotic partners that can learn and remember them effectively.

View Article and Find Full Text PDF

In flies, the maxillary palp possesses olfactory sensilla housing olfactory receptor neurons (ORNs), which project to the primary olfactory center, the antennal lobes (ALs). The labellum possesses gustatory sensilla housing gustatory receptor neurons (GRNs), which project to the primary gustatory center, the subesophageal ganglion (SOG). Using an anterograde staining method, we investigated the axonal projections of sensory receptor neurons from the maxillary palp and labellum to the SOG or other parts of brain in the blowfly, Phormia regina.

View Article and Find Full Text PDF

Regulation via interspecific communication is an important for the maintenance of many mutualisms. However, mechanisms underlying the evolution of partner communication are poorly understood for many mutualisms. Here we show, in an ant-lycaenid butterfly mutualism, that attendant ants selectively learn to recognize and interact cooperatively with a partner.

View Article and Find Full Text PDF

In termites, division of labor among castes, categories of individuals that perform specialized tasks, increases colony-level productivity and is the key to their ecological success. Although molecular studies on caste polymorphism have been performed in termites, we are far from a comprehensive understanding of the molecular basis of this phenomenon. To facilitate future molecular studies, we aimed to construct expressed sequence tag (EST) libraries covering wide ranges of gene repertoires in three representative termite species, Hodotermopsis sjostedti, Reticulitermes speratus and Nasutitermes takasagoensis.

View Article and Find Full Text PDF

In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti.

View Article and Find Full Text PDF

One of the major foci in evolutionary developmental biology is to understand developmental mechanisms that underlie the acquisition of morphological novelties. Termite soldiers, the highly specialized defensive caste, show exaggerated species-specific morphologies, mostly enlarged mandibles. Soldiers of the subfamily Nasutitermitinae (Termitidae), however, possess a novel structure for defense in their heads, that is a horn-like frontal projection (nasus) from which defensive chemicals are discharged.

View Article and Find Full Text PDF

Unlike lower termites, xylophagous higher termites thrive on wood without the aid of symbiotic protists. In the higher termite Nasutitermes takasagoensis, both endogenous endo-β-1,4-glucanase and β-glucosidase genes are expressed in the midgut, which is believed to be the main site of cellulose digestion. To further explore the detailed cellulolytic system in the midgut of N.

View Article and Find Full Text PDF

We identified the soldier-specific compounds in the Japanese subterranean termite, Reticulitermes speratus, to clarify their ethological roles. Silica gel column chromatography separated one major soldier-specific compound in the hexane fraction accounting for 70-80% of the total amount of the fraction, while cuticular hydrocarbons constituted the rest. We identified the compound as β-selinene by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Defensive strategies of termite soldiers are roughly classified as either mechanical, using mandibles and/or the whole head, or chemical, using frontal gland secretion. Soldiers of the genus Nasutitermes (Termitidae, Nasutitermitinae), which is one of the most derived termite genera, use only chemical defenses, and diterpene defensive secretions were suggested to be synthesized through geranylgeranyl diphosphate (GGPP). On the other hand, soldiers of the genus Reticulitermes (Rhinotermitidae, Heterotermitinae) mainly use mechanical defenses, but also use supplementary chemical defenses involving frontal gland secretions, including diterpene alcohol.

View Article and Find Full Text PDF

The ability of JHIII and three JHAs (hydroprene, pyriproxyfen and methoprene) to induce presoldier differentiation was tested in a highly derived termite, Nasutitermes takasagoensis (Isoptera: Nasutitermitinae), and induced presoldiers were examined morphologically and histologically. Hydroprene was the most effective hormone analog for the artificial induction of presoldier differentiation. Principal component analysis showed that hydroprene-induced presoldiers had similar external gross morphology to natural presoldiers found in the same colony.

View Article and Find Full Text PDF

The exploitation of parental care is common in avian and insect 'cuckoos' and these species engage in a coevolutionary arms race. Caterpillars of the lycaenid butterfly Niphanda fusca develop as parasites inside the nests of host ants (Camponotus japonicus) where they grow by feeding on the worker trophallaxis. We hypothesized that N.

View Article and Find Full Text PDF