Publications by authors named "Masao Sasai"

Article Synopsis
  • The hemagglutinating virus of Japan envelope (HVJ-E) is an inactivated virus that has shown promise in treating chemotherapy-resistant malignant pleural mesothelioma (MPM) by inducing antitumor immunity.
  • A phase I clinical study focused on determining a suitable dosage and evaluating the preliminary efficacy of HVJ-E, finding that higher doses resulted in better disease control rates compared to lower doses.
  • The study concluded that HVJ-E is safe for patients and appears to have some antitumor activity, leading to plans for a phase II trial with higher dosages.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches as a regenerative therapy for heart failure, aiming to safely repair damaged heart tissue.
  • Researchers created a clinical-grade hiPSC line and differentiated them into cardiomyocytes, assessing their safety and effectiveness through in vitro and in vivo testing, including a porcine heart model.
  • Results showed that hiPSC-CMs exhibited properties similar to natural heart cells, with no signs of tumor formation or adverse effects, and significantly improved heart function and blood vessel growth, indicating their potential for treating heart failure.
View Article and Find Full Text PDF

Critical limb ischemia (CLI) is a state of severe peripheral artery disease, with no effective treatment. Cell therapy has been investigated as a therapeutic tool for CLI, and pericytes are promising therapeutic candidates based on their angiogenic properties. We firstly generated highly proliferative and immunosuppressive pericyte-like cells from embryonic stem (ES) cells.

View Article and Find Full Text PDF

Introduction: The Act on the Safety of Regenerative Medicine enforced in Japan in 2014, regulates the manufacture of cellular processed products. However, with regards to the manufacturing facilities at medical institutions, only the submission of necessary documents is required for a license, and the need for third-party inspection has been highlighted. Remote activities are becoming more prominent with the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 infection; therefore, the current assessment of compliance with structural facility standards was conducted remotely.

View Article and Find Full Text PDF

Introduction: With the expected increase in patients with heart failure and ischemic 15 cardiomyopathy, the development of myocardial regenerative medicine using cell transplantation as a novel treatment method is progressing. This first-in-human clinical trial aimed to confirm the safety of cardiomyocyte patch transplantation derived from allogeneic induced pluripotent stem (iPS) cells based on the results of several preclinical studies.

Study Design: The inclusion criteria were left ventricular ejection fraction of 35% or less; heart failure symptoms of New York Heart Association class III or higher despite existing therapies such as revascularization; and a 1-year observation period that included a 3-month immunosuppressive drug administration period after transplantation of iPS cell-derived cardiomyocyte patches to evaluate adverse events, cardiac function, myocardial blood flow, heart failure symptoms, and immune response.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is a refractory tumor because most of the lesions are already disseminated at diagnosis. Previously, the main treatment for MPM was combination chemotherapy. However, recently, immune checkpoint inhibitors (ICIs) are also used.

View Article and Find Full Text PDF

Despite major therapeutic advances, heart failure, as a non-communicable disease, remains a life-threatening disorder, with 26 million patients worldwide, causing more deaths than cancer. Therefore, novel strategies for the treatment of heart failure continue to be an important clinical need. Based on preclinical studies, allogenic human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches have been proposed as a potential therapeutic candidate for heart failure.

View Article and Find Full Text PDF

A rotating wall vessel (RWV) bioreactor was constructed for growing massive functional cardiac constructs to recover the function of a distressed rat heart. Three-dimensional cardiac tissues were engineered by seeding human-induced pluripotent stem cell-derived cardiomyocytes on poly(lactic-co-glycolic acid) fiber sheets (3D-hiPSC-CTs) and cultured in the RWV bioreactor (RWV group) or under static conditions (control group). The tissues were transplanted into a myocardial infarction nude rat model, and cardiac performance was evaluated.

View Article and Find Full Text PDF

The 5-year survival rate for pancreatic cancer remains low, and the development of new methods for its treatment is actively underway. After the surgical treatment of pancreatic cancer, recurrence and peritoneal dissemination can be prevented by long-term local exposure to appropriate drug concentrations. We propose a novel treatment method using non-woven sheets to achieve this goal.

View Article and Find Full Text PDF

A major concern in the clinical application of cell therapy is the manufacturing cost of cell products, which mainly depends on quality control. The mycoplasma test, an important biological test in cell therapy, takes several weeks to detect a microorganism and is extremely expensive. Furthermore, the manual detection of mycoplasma from images requires high-level expertise.

View Article and Find Full Text PDF

Cisplatin (-diamminedichloroplatinum (II); CDDP) is a key chemotherapeutic agent but causes renal damage and other off-target effects. Here, we describe the pharmacological and biochemical characteristics of a novel formulation of CDDP complexed with γ-polyglutamic acid (γ-PGA) and chitosan (CS), γ-PGA/CDDP-CS, developed by complexing CDDP with γ-PGA, then adding CS (15 kDa; 10 mol%/γ-PGA). We analyzed tumor cytotoxicity in vitro, as well as blood kinetics, acute toxicity, and antitumor efficacy in vivo in BALB/cAJcl mice.

View Article and Find Full Text PDF

Critical limb ischemia (CLI) is a severe state of peripheral artery disease with high unmet clinical needs. Further, there are no effective treatment options for patients with CLI. Based on preclinical study results, predicting the clinical efficacy of CLI treatments is typically difficult because conventional hindlimb ischemia (HLI) rodent models display spontaneous recovery from ischemia, which is not observed in patients with CLI.

View Article and Find Full Text PDF

Background: Malignant pleural mesothelioma (MPM) is a refractory cancer of the pleura caused by asbestos exposure. MPM is difficult to treat because it easily disseminates. Boron neutron capture therapy (BNCT) is a radiotherapy in which cancer cells that selectively take up (10)Boron-containing compounds are destroyed, and normal cells are uninjured.

View Article and Find Full Text PDF

In this study, we created a nanoscale layer of hyaluronic acid (HA) on the inactivated Hemagglutinating Virus of Japan envelope (HVJ-E) via a layer-by-layer (LbL) assembly technique for CD-44 targeted delivery. HVJ-E was selected as the template virus because it has shown a tumor-suppressing ability by eliciting inflammatory cytokine production in dendritic cells. Although it has been required to increase the tumor-targeting ability and reduce nonspecific binding because HVJ-E fuses with virtually all cells and induces hemagglutination in the bloodstream, complete modifications of single-envelope-type viruses with HA have been difficult.

View Article and Find Full Text PDF

Background: Biosurfactant mannosyl-erythritol lipids (MELs) are glycolipids produced by microbes that have various biological activities. It has been reported that MELs exhibit excellent surface-activity and also various bioactivities, such as induction of cell differentiation and apoptosis. However, little is known about their action related to drug discovery or drug seeds.

View Article and Find Full Text PDF

Background: Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface.

View Article and Find Full Text PDF

Exocytosis is a crucial process of secreting various signaling molecules such as neurotransmitters, hormones, and other chemical mediators into the extracellular space. Exocytotic release is caused by membrane fusion of intracellular vesicles with the plasma membrane triggered by an increase in intracellular Ca(2+). In the present study, we developed an artificial system of exocytosis that secretes intravesicular contents upon Ca(2+) influx.

View Article and Find Full Text PDF