Publications by authors named "Masanori Muroyama"

For biomedical applications, smart materials that are used as sensors or actuators have to match some criteria, especially bio-compatibility and softness. Smart polymers are candidates that fulfill these two criteria. A sensitivity to compression is created by adding magnetic particles to a compressible foam polymer.

View Article and Find Full Text PDF

By using the stress-impedance (SI) effect of a soft magnetic amorphous FeCuNbSiB alloy, a micromachined force sensor was fabricated and characterized. The alloy was used as a sputtered thin film of 500 nm thickness. To clarify the SI effect in the used material as a thin film, its magnetic and mechanical properties were first investigated.

View Article and Find Full Text PDF

Covering a whole surface of a robot with tiny sensors which can measure local pressure and transmit the data through a network is an ideal solution to give an artificial skin to robots to improve a capability of action and safety. The crucial technological barrier is to package force sensor and communication function in a small volume. In this paper, we propose the novel device structure based on a wafer bonding technology to integrate and package capacitive force sensor using silicon diaphragm and an integrated circuit separately manufactured.

View Article and Find Full Text PDF

For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication.

View Article and Find Full Text PDF

This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame.

View Article and Find Full Text PDF

Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed the "Bio-LSI," a large-scale integrated CMOS-based sensor array with 400 measurement points for electrochemical bio-imaging and multi-point biosensing.
  • The new chip features a light-shield structure that drastically reduces noise from photocurrent to under 1%, and includes a mode-selectable function allowing individual control of 400 electrodes for various measurement modes.
  • Demonstrations showed the system's effectiveness by creating images from redox reactions, detecting O2 and H2O2 simultaneously, and modifying sensors at selected electrodes, highlighting its potential for diverse analytical applications.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsood8emcfqiahgvoeqr68hs7rnga2nug): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once