Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
November 2024
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.
View Article and Find Full Text PDFBackground: Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown.
View Article and Find Full Text PDFDiabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor (VEGF)-dependent angiogenesis remain uncertain and could reveal new therapeutic targets. In our study, the molecular underpinnings of endothelial dysfunction in diabetes were investigated, focusing on the roles of Disabled-2 (Dab2) and Forkhead Box M1 (FoxM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell (EC) function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high concentrations glucose treated primary mouse skin ECs, simulating hyperglycemic conditions in diabetes mellitus.
View Article and Find Full Text PDFThe coronavirus disease (COVID-19) pandemic has occurred in Massachusetts in multiple waves led by a series of emerging variants. While the evidence has linked obesity with severe symptoms of COVID-19, the effect of obesity on susceptibility to SARS-CoV-2 infection remains unclear. Identification of intrinsic factors, which increase the likelihood of exposed individuals succumbing to productive SARS-CoV-2 infection could help plan mitigation efforts to curb the illness.
View Article and Find Full Text PDFRecent clinical trials demonstrated that proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors reduce cardiovascular events without affecting systemic inflammation in the patients with coronary artery disease, as determined by high sensitivity C-reactive protein (CRP) levels. However, its pro-inflammatory effects in cardiovascular disease in humans and experimental animals beyond the traditional cholesterol receptor-dependent lipid metabolism have also called attention of the scientific community. PCSK9 may target receptors associated with inflammation other than the low-density lipoprotein receptor (LDLR) and members of the LDLR family.
View Article and Find Full Text PDFObjective: Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.
Methods: OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation.
Carnitine O-octanoyltransferase (CROT) is a well-established peroxisomal enzyme involved in liver fatty acid oxidation, but less is known about its recently discovered role in promoting vascular calcification, and whether CROT-dependent liver metabolism contributes to the latter. To date, CROT function in the context of calcification potential has been conducted in the dyslipidemic low-density lipoprotein receptor-deficient () mice. To differentiate peroxisome and CROT-dependent lipid biology from that of lipoprotein-mediated lipid biology, we therefore conducted a metabolomic analysis of the liver and plasma of normolipidemic CROT-deficient () mice.
View Article and Find Full Text PDFPathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.
View Article and Find Full Text PDFPARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict.
View Article and Find Full Text PDFBackground: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport.
Methods: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins.
Single-use laboratory plastics exacerbate the pollution crisis and contribute to consumable costs. In extracellular vesicle (EV) isolation, polycarbonate ultracentrifuge (UC) tubes are used to endure the associated high centrifugal forces. EV proteomics is an advancing field and validated re-use protocols for these tubes are lacking.
View Article and Find Full Text PDFIn calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD because of the paucity of (i) appropriate experimental models that recapitulate this complex environment and (ii) benchmarking novel engineered aortic valve (AV)-model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, three-dimensional (3D)-bioprinted into 96-well arrays.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2024
HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins.
View Article and Find Full Text PDFShort-term preoperative methionine restriction (MetR) shows promise as a translatable strategy to modulate the body's response to surgical injury. Its application, however, to improve post-interventional vascular remodeling remains underexplored. Here, we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and adverse vascular remodeling after vein graft surgery.
View Article and Find Full Text PDFBackground: BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied.
View Article and Find Full Text PDFBackground: High circulating levels of Lp(a) (lipoprotein[a]) increase the risk of atherosclerosis and calcific aortic valve disease, affecting millions of patients worldwide. Although atherosclerosis is commonly treated with low-density lipoprotein-targeting therapies, these do not reduce Lp(a) or risk of calcific aortic valve disease, which has no available drug therapies. Targeting Lp(a) production and catabolism may provide therapeutic benefit, but little is known about Lp(a) cellular uptake.
View Article and Find Full Text PDFBackground: Interferon-γ (IFNγ) signaling plays a complex role in atherogenesis. IFNγ stimulation of macrophages permits in vitro exploration of proinflammatory mechanisms and the development of novel immune therapies. We hypothesized that the study of macrophage subpopulations could lead to anti-inflammatory interventions.
View Article and Find Full Text PDF