In this study, we present an innovative approach for creating hierarchical meso/nanoporous Pt films using dynamic soft templating. The fabrication process, called dynamic soft templating, involves Pt electrodeposition within a specialized bicontinuous microemulsion (BME) system characterized by a sophisticated three-dimensional network comprising water and oil phases, surfactants, and cosurfactants. Pt electrodeposition exclusively occurs in the water phase of the BME.
View Article and Find Full Text PDFA novel NH gas sensor is introduced, employing polyaniline (PANI) with a unique structure called a graft film. The preparation method was simple: polydopamine (PD) was coated on a flexible polyethylene terephthalate (PET) film and PANI graft chains were grown on its surface. This distinctive three-layer sensor showed a response value of 12 for 50 ppm NH in a dry atmosphere at 50 °C.
View Article and Find Full Text PDFA highly sensitive NH gas sensor based on micrometer-sized polyaniline (PANI) spheres was successfully fabricated. The PANI microspheres were prepared via a facile in situ chemical oxidation polymerization in a polystyrene microsphere dispersion solution, resulting in a core-shell structure. The sensor response increased as the diameter of the microspheres increased.
View Article and Find Full Text PDFWe report on an optical nitrogen oxide (NO) gas sensor device using cobalt tetraphenylporphyrin (CoTPP) dispersed in three kinds of hydrophobic polymer film matrix (polystyrene (PSt), ethylcellulose (EC), and polycyclohexyl methacrylate (PCHMA)) to improve humidity resistance. Our approach is very effective because it allows us to achieve not only high humidity resistance, but also a more than sixfold increase in sensitivity compared with CoTPP film due to the high dispersion of CoTPP in the polymer film. The limit of detection was calculated as 33 ppb for the CoTPP-dispersed EC film, which is lower than that of CoTPP film (92 ppb).
View Article and Find Full Text PDFPoly(-isopropylacrylamide) (PNIPAM) nanoparticles formed in water-methanol binary solvent were successfully deposited on a resonator surface at room temperature by exploiting the cononsolvency effect on the phase transition of PNIPAM aqueous solutions. Scanning electron microscopic observation revealed that the nanoparticles were secondary and made up of agglomerated primary spherical particles of about 10-nm diameter, buried in the film. The magnitude of the sensor response toward HCl gas was larger than that of the nanoparticle sensor prepared from pure water solvent, and the sensitivity to 1 ppm of HCl of sensor-coated nanoparticles based on the present method was 3.
View Article and Find Full Text PDF