Co-infection, caused by multiple pathogen attacks on an organism, can lead to disease development or immunity. This complex interaction can be synergetic, co-existing, or antagonistic, ultimately influencing disease severity. The interaction between fungus, bacterium, and virus (three kingdom pathogens) is most prevalent.
View Article and Find Full Text PDFLoss-of-function mutation of the MILDEW RESISTANCE LOCUS O (Mlo) gene confers durable and broad-spectrum resistance to powdery mildew fungi in various plants, including barley. In combination with the intracellular nucleotide-binding domain and leucine-rich repeat receptor (NLR) genes, which confer the race-specific resistance, the mlo alleles have long been used in barley breeding as genetic resources that confer robust non-race-specific resistance. However, a Japanese Blumeria graminis f.
View Article and Find Full Text PDFHigh humidity decreases the penetration rate of barley powdery mildew f. sp. .
View Article and Find Full Text PDFRNA silencing is a sequence-specific suppression of gene expression conserved in eukaryotes including fungi, plants, and animals. Based on this mechanism, crop improvements have been made to confer pathogen resistance and abiotic stress tolerance. Here we have applied this technique to produce virus resistant tomato plants using host genes involved in viral replication.
View Article and Find Full Text PDFNB-LRR class plant virus resistance gene is a one of the key players that shape the plant-virus interaction. Evolutionary arms race between plants and viruses often results in the breakdown of virus resistance in plants, which leads to a disastrous outcome in agricultural production. Although studies have analyzed the nature of plant virus resistance breakdown, it is still difficult to foresee the breakdown of a given virus resistance gene.
View Article and Find Full Text PDFThe TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium.
View Article and Find Full Text PDFChlorosis is one of the most common symptoms of plant diseases, including those caused by viruses and viroids. Recently, a study has shown that Peach latent mosaic viroid (PLMVd) exploits host RNA silencing machinery to modulate the virus disease symptoms through the silencing of chloroplast-targeted heat shock protein 90 (Hsp90C). To understand the molecular mechanisms of chlorosis in this viroid disease, we established an experimental system suitable for studying the mechanism underlying the chlorosis induced by the RNA silencing of Hsp90C in transgenic tobacco.
View Article and Find Full Text PDFRecent studies with Y satellite RNA (Y-sat) of cucumber mosaic virus have demonstrated that Y-sat modifies the disease symptoms in specific host plants through the silencing of the magnesium protoporphyrin chelatase I subunit (CHLI), which is directed by the Y-sat derived siRNA. Along with the development of peculiar yellow phenotypes, a drastic decrease in CHLI-transcripts and a higher accumulation of Y-sat derived siRNA were observed. To investigate the molecular mechanisms underlying the Y-sat-induced chlorosis, especially whether or not the reduced expression of CHLI causes the chlorosis simply through the reduced production of chlorophyll or it triggers some other mechanisms leading to the chlorosis, we have established a new experimental system with an inducible silencing mechanism.
View Article and Find Full Text PDFThe complete nucleotide sequences of Beet pseudoyellows virus (BPYV)-MI (cucumber isolate; Matsuyama, Idai) genomic RNAs 1 and 2 were determined and compared with the previously sequenced Japanese cucumber strain (BPYV-JC) and a strawberry strain (BPYV-S). The RNA 2 of BPYV-MI showed 99 % nucleotide sequence identity with both BPYV-JC and -S having highly conserved eight ORFs. In contrast, the RNA1 of BPYV-MI showed sequence identities of 98 and 86 % with BPYV-JC and -S, respectively.
View Article and Find Full Text PDFWe investigated graft transmission of high-temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA-silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control.
View Article and Find Full Text PDFBackground: Aspartic protease (APs) plays important roles in plant growth, development and biotic and abiotic stresses. We previously reported that the expression of a rice AP gene (OsAP77, Os10g0537800) was induced by probenazole (PBZ), a chemical inducer of disease resistance. In this study we examined some characteristics of this gene in response to fungal, bacterial and viral pathogens.
View Article and Find Full Text PDFHeme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF-Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β-glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice.
View Article and Find Full Text PDFRNA silencing is a mechanism of gene regulation by sequence specific RNA degradation and is involved in controlling endogenous gene expression and defense against invasive nucleic acids such as viruses. RNA silencing has been proven to be transmitted between scions and rootstocks through grafting, mostly using transgenic plants. It has been reported that RNA silencing of tobacco endogenous genes, NtTOM1 and NtTOM3, that are required for tobamovirus multiplication, resulted in high resistance against several tobamoviruses.
View Article and Find Full Text PDFSmall RNA-mediated gene silencing pathways play important roles in the regulation of development, genome stability and various stress responses in many eukaryotes. Recently, a new type of small interfering RNAs (qiRNAs) approximately 20-21 nucleotides long in Neurospora crassa have been shown to mediate gene silencing in the DNA damage response (DDR) pathway. However, the mechanism for RNA silencing in the DDR pathway is largely unknown in plants.
View Article and Find Full Text PDFThe N' gene of Nicotiana sylvestris and L genes of Capsicum plants confer the resistance response accompanying the hypersensitive response (HR) elicited by tobamovirus coat proteins (CP) but with different viral specificities. Here, we report the identification of the N' gene. We amplified and cloned an N' candidate using polymerase chain reaction primers designed from L gene sequences.
View Article and Find Full Text PDFMany plant viruses encode proteins that suppress RNA silencing, but little is known about the activity of silencing suppressors in roots. This study examined differences in the silencing suppression activity of different viruses in leaves and roots of Nicotiana benthamiana plants. Infection by tobacco mosaic virus, potato virus Y and cucumber mosaic virus but not potato virus X (PVX) resulted in strong silencing suppression activity of a transgene in both leaves and roots, whereas infection by beet necrotic yellow vein virus (BNYVV) and tobacco rattle virus (TRV) showed transgene silencing suppression in roots but not in leaves.
View Article and Find Full Text PDFIn pepper plants (genus Capsicum), the resistance against Tobamovirus spp. is conferred by L gene alleles. The recently identified L variant L(1a) can recognize coat proteins (CPs) of Tobacco mild green mosaic virus Japanese strain (TMGMV-J) and Paprika mild mottle virus Japanese strain (PaMMV-J), but not of Pepper mild mottle virus (PMMoV), as the elicitor to induce resistance at 24 °C.
View Article and Find Full Text PDFCucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of melon plants worldwide. For effective control of this virus using the transgenic approach, the direct repeat of the movement protein gene of CGMMV was used for transforming melon plants by Agrobacterium tumefaciens. PCR and Southern blot analyses of T₃ confirmed that they carried the transgene.
View Article and Find Full Text PDFRNA silencing is a sequence-specific RNA degradation mechanism conserved in eukaryotes including fungi, plants, and animals. One of the three RNA silencing pathways is DNA methylation which is the result of interaction between DNA and siRNA, a hallmark of RNA silencing. Bisulfite sequencing can be very powerful for DNA methylation analysis in this context.
View Article and Find Full Text PDFBased on the nucleotide sequence of QDE-3 in Neurospora crassa, which is involved in RNA silencing, rice (Oryza sativa) mutant lines disrupted by the insertion of the rice retrotransposon Tos17 were selected. Homozygous individuals from the M(1) and M(2) generations were screened and used for further analyses. The expression of the gene was not detected in leaves or calli of the mutant lines, in contrast to the wild type (WT).
View Article and Find Full Text PDFA plant integral membrane protein TOM1 is involved in the multiplication of Tomato mosaic virus (ToMV). TOM1 interacts with ToMV replication proteins and has been suggested to tether the replication proteins to the membranes where the viral RNA synthesis takes place. We have previously demonstrated that inactivation of TOM1 results in reduced ToMV multiplication.
View Article and Find Full Text PDFA new tobamo-like virus was isolated from a greenhouse-grown cucumber that showed severe mosaic distortion on leaves and fruit, in the southern part of Japan. The virus was tentatively designated Cucumber mottle virus (CuMoV) and further characterized. The size and antigenicity of the coat protein (CP) and the complete sequence of the genome were compared with those of the known cucurbit-infecting tobamoviruses: the W and SH strains of Cucumber green mottle mosaic virus (CGMMV), the C and Y strains of Kyuri green mottle mosaic virus (KGMMV), Cucumber fruit mottle mosaic virus (CFMMV), and Zucchini green mottle mosaic virus (ZGMMV).
View Article and Find Full Text PDFRNA silencing is often associated with methylation of the target gene. The DNA methylation level of transgenes was investigated in post-transcriptionally silenced or non-silenced Nicotiana benthamiana carrying either the 5' region (200 or 400 bp) or the entire region of the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Higher levels of transgene cytosine methylation were observed in both symmetrical (CpG, CpNpG) and non-symmetrical (CpHpH) contexts (CpG>CpNpG>CpHpH) in silenced lines, but there was very lower levels or no transgene methylation in non-silenced lines.
View Article and Find Full Text PDFRNA silencing technology was used to confer resistance to cucumber green mottle mosaic virus (CGMMV). Nicotiana benthamiana was transformed with a transgene designed to produce an inverted repeat RNA containing CGMMV-coat protein gene (CP) sequences, which were separated by an intron sequence, under the control of the cauliflower mosaic virus 35S promoter. We attempted to confirm the resistance of seven independent transgenic lines; five lines showed resistance to CGMMV infection.
View Article and Find Full Text PDFWe have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5' 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments.
View Article and Find Full Text PDF