Laryngoscope Investig Otolaryngol
August 2024
Objectives: Three-tesla MRI with gadolinium-based contrast agents is important in diagnosing Ménière's disease. However, contrast agents cannot be used in some patients. By using the compositional difference between the inner ear endolymph and perilymph, we performed basic and clinical research focused on potassium ions and protein to find the optimal parameters for visualizing endolymphatic hydrops on MRI without contrast.
View Article and Find Full Text PDFPurpose: Quantitative MRI techniques such as T2 mapping are useful in comprehensive evaluation of various pathologies of the knee joint yet require separate scans to conventional morphological measurements and long acquisition times. The recently introduced 3D MIXTURE (Multi-Interleaved X-prepared Turbo-Spin Echo with Intuitive Relaxometry) technique can obtain simultaneous morphologic and quantitative information of the knee joint. To compare MIXTURE with conventional methods and to identify differences in morphological and quantitative information.
View Article and Find Full Text PDFQuantitative MRI techniques such as T2 and T1ρ mapping are beneficial in evaluating knee joint pathologies; however, long acquisition times limit their clinical adoption. MIXTURE (Multi-Interleaved X-prepared Turbo Spin-Echo with IntUitive RElaxometry) provides a versatile turbo spin-echo (TSE) platform for simultaneous morphologic and quantitative joint imaging. Two MIXTURE sequences were designed along clinical requirements: "MIX1", combining proton density (PD)-weighted fat-saturated (FS) images and T2 mapping (acquisition time: 4:59 min), and "MIX2", combining T1-weighted images and T1ρ mapping (6:38 min).
View Article and Find Full Text PDFPurpose: Prolonged scanning of time-resolved 3D phase-contrast MRI (4D flow MRI) limits its routine use in clinical practice. An echo-planar imaging (EPI)-based sequence and compressed sensing can reduce the scan duration. We aimed to determine the impact of EPI for 4D flow MRI on the scan duration, image quality, and quantitative flow metrics.
View Article and Find Full Text PDFPurpose: Neuromelanin is visualized by optimizing the conditions of longitudinal relaxation (T1)-weighted imaging (T1WI). Although it was originally developed in 2D imaging, 3D imaging has been also reported, and T1WI sequences with magnetization transfer (MT) pulses are now widely used in 3D gradient echo (GRE) sequences. In this study, we assert that the use of spectral presaturation with inversion recovery (SPIR) may also be useful as an alternative to MT pulses, and we optimize SPIR and compare it with MT.
View Article and Find Full Text PDFPurpose: To assess the reproducibility of ADC, T1, T2, and proton density (PD) measurements on the cortex across the entire brain using high-resolution pseudo-3D diffusion-weighted imaging using echo-planar imaging with compressed SENSE (EPICS-DWI) and 3D quantification with an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) in normal healthy adults.
Methods: Twelve healthy participants (median age, 33 years; range, 28-51 years) were recruited to evaluate the reproducibility of whole-brain EPICS-DWI and synthetic MRI. EPICS-DWI utilizes a compressed SENSE reconstruction framework while maintaining the EPI sampling pattern.
We investigated the ability of echo-planar imaging with L1-regularized iterative sensitivity encoding-based diffusion-weighted imaging (DWI) to improve the image quality and reduce the scanning time in prostate magnetic resonance imaging. We retrospectively analyzed 109 cases of prostate magnetic resonance imaging. We compared variables in the quantitative and qualitative assessments among 3 imaging groups: conventional parallel imaging-based DWI (PI-DWI) with an acquisition time of 3 minutes 15 seconds; echo-planar imaging with L1-regularized iterative sensitivity encoding-based DWI (L1-DWI) with a normal acquisition time (L1-DWINEX12) of 3 minutes 15 seconds; and L1-DWI with a half acquisition time (L1-DWINEX6) of 1 minute 45 seconds.
View Article and Find Full Text PDFPurpose: To evaluate the effect of a cylindrical regional-suppression technique (CREST) on image quality and lesion conspicuity in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast.
Method: This was a comparative study of 67 women with 44 lesions who underwent breast DCE-MRI with CREST (CREST-DCE) and had a previous DCE-MRI without CREST (conv-DCE) available. Two radiologists assessed image quality parameters and lesion conspicuity using five-point Likert scales.
Purpose: We evaluated the usefulness of three-dimensional (3D) chemical exchange saturation transfer (CEST) imaging with compressed sensing and sensitivity encoding (CS-SENSE) for differentiating low-grade gliomas (LGGs) from high-grade gliomas (HGGs).
Methods: We evaluated 28 patients (mean age 51.0 ± 13.
Purpose: Motion artifacts caused by breathing or involuntary motion of patients, which may lead to reduced image quality and a loss of diagnostic information, are a major problem in shoulder magnetic resonance imaging (MRI). The MultiVane (MV) technique decreases motion artifacts; however, it tends to prolong the acquisition time. As a parallel imaging technique, SENSitivity Encoding (SENSE) can be combined with the compressed sensing method to produce compressed SENSE (C-SENSE), resulting in a markedly reduced acquisition time.
View Article and Find Full Text PDFBackground Liver MR fingerprinting (MRF) enables simultaneous quantification of T1, T2, T2*, and proton density fat fraction (PDFF) maps in single breath-hold acquisitions. Histopathologic correlation studies are desired for its clinical use. Purpose To compare liver MRF-derived metrics with separate reference quantitative MRI in participants with diffuse liver disease, evaluate scan-rescan repeatability of liver MRF, and validate MRF-derived measurements for histologic grading of liver biopsies.
View Article and Find Full Text PDFPurpose: To evaluate diffusion-weighted imaging (DWI) using echo planar imaging (EPI) with compressed SENSE (EPICS) of the head and neck magnetic resonance imaging (MRI).
Method: We retrospectively observed 32 patients who underwent head and neck DWI according to either the conventional method (SENSE, reduction factor = 2), fast scanning method (SENSE, reduction factor = 4), or fast scanning method with EPICS (EPICS, reduction factor = 4). For quantitative analysis, contrast-to-noise-ratio (CNR), apparent diffusion coefficient (ADC) values, geometric distortion, and coefficient of variations (CV) were measured and compared.