The Disrupted-in-Schizophrenia 1 (DISC1) gene plays a role in the regulation of neural development. Previous evidence from genetic association and biological studies implicates the DISC1 gene as having a role in the pathophysiology of schizophrenia. In the present study, we explored the association between DISC1 missense mutation rs821616 (Ser704Cys) single nucleotide polymorphism (SNP) and four other SNPs (rs1772702, rs1754603, rs821621, rs821624) in the related haplotype block and schizophrenia in the Japanese population.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2013
Background: Cell adhesion molecules (CAMs) play pivotal role in the development of the central nervous system (CNS) and have also been reported to play role in the pathophysiology of schizophrenia. Missense mutations in the CAMs genes might alter the binding of their ligands, increasing the vulnerability to develop schizophrenia.
Methods: We selected 15 missense mutations in the CAMs genes of the CNS reported in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and examined the association between these mutations and schizophrenia in 278 patients and 284 control subjects (first batch).
Recent genome-wide association study (GWAS) and gene expression analyses have revealed that single nucleotide polymorphisms (SNPs) associated with complex diseases such as schizophrenia are significantly more likely to be associated with expression quantitative trait loci (eQTL). The interleukin-1β (IL1B) gene has been strongly implicated in the susceptibility to schizophrenia. In order to test this association, we selected five tag SNPs in the eQTL of the IL1B gene and conducted a case-control study using two independent samples.
View Article and Find Full Text PDF