Podoplanin, PDPN, is a mucin-type transmembrane glycoprotein widely expressed in many tissues, including lung, kidney, lymph nodes, and mineralized tissues. Its function is critical for lymphatic formation, differentiation of type I alveolar epithelial lung cells, and for bone response to biomechanical loading. It has previously been shown that Pdpn null mice die at birth due to respiratory failure emphasizing the importance of Pdpn in alveolar lung development.
View Article and Find Full Text PDFBMP signaling plays pleiotropic roles in various tissues during embryogenesis and after birth. We have previously generated a constitutively activated Acvr1(ca-Acvr1) transgenic mouse line (line L35) through pronuclei injection to investigate impacts of enhanced BMP signaling in a tissue specific manner. However, line L35 shows a restricted expression pattern of the transgene.
View Article and Find Full Text PDFCranial neural crest cells (CNCCs) are a population of multipotent stem cells that give rise to craniofacial bone and cartilage during development. Bone morphogenetic protein (BMP) signaling and autophagy have been individually implicated in stem cell homeostasis. Mutations that cause constitutive activation of the BMP type I receptor ACVR1 cause the congenital disorder fibrodysplasia ossificans progressiva (FOP), which is characterized by ectopic cartilage and bone in connective tissues in the trunk and sometimes includes ectopic craniofacial bones.
View Article and Find Full Text PDFDuring palatogenesis, the palatal shelves first grow vertically on either side of the tongue before changing their direction of growth to horizontal. The extracellular matrix (ECM) plays an important role in these dynamic changes in palatal shelf morphology. Tenascin-C (TNC) is an ECM glycoprotein that shows unique expression in the posterior part of the palatal shelf, but little is known about the regulation of TNC expression.
View Article and Find Full Text PDFThe treatment of ulceration or stomatitis with laser therapy is known to accelerate healing and relieve pain, but the underlying biological mechanism is not fully understood. The present study used a mouse model of ulceration to investigate the molecular mechanisms by which CO₂ laser therapy accelerated the wound healing process. An ulcer was experimentally created in the palatal mucosa of the mouse and irradiated with light from a CO₂ laser.
View Article and Find Full Text PDF