We previously reported that in Arabidopsis, the phytochelatin-mediated metal-detoxification machinery is also essential for organomercurial phenylmercury (PheHg) tolerance. PheHg treatment causes severe root growth inhibition in cad1-3, an Arabidopsis phytochelatin-deficient mutant, frequently accompanied by abnormal root tip swelling. Here, we examine morphological and physiological characteristics of PheHg-induced abnormal root tip swelling in comparison to Hg(II) stress and demonstrate that auxin homeostasis disorder in the root is associated with the PheHg-induced root tip swelling.
View Article and Find Full Text PDFA perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri.
View Article and Find Full Text PDFMethylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg·d MeHg with or without 100 µg·kg·d OA3Glu 5x/week for four weeks.
View Article and Find Full Text PDFMethylmercury (MeHg) is converted to inorganic mercury (iHg) in several organs; however, its impact on tissues and cells remains poorly understood. Previously, we established a bacterial organomercury lyase (MerB)-expressing mammalian cell line to overcome the low cell permeability of iHg and investigate its effects. Here, we elucidated the cytotoxic effects of the resultant iHg on autophagy and deciphered their relationship.
View Article and Find Full Text PDFMethylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg.
View Article and Find Full Text PDFGadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to improve the sensitivity and enhance diagnostic performance. GBCAs are mostly eliminated from the body through the kidney after administration; however small amounts of gadolinium are retained in the brain and other tissues. Although there is increasing concern about the adverse health effects of gadolinium, the cellular effects of GBCAs remains poorly understood.
View Article and Find Full Text PDFMethylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity.
View Article and Find Full Text PDFChronic exposure to methylmercury (MeHg) is positively associated with obesity and metabolic syndromes. However, the effect of MeHg on adipogenesis has not been thoroughly investigated. This study investigated the effects of continuous exposure to 0.
View Article and Find Full Text PDFWe aimed to efficiently enhance plant Hg(II) tolerance by the transgenic approach utilizing a bacterial mercury transporter MerC, an Arabidopsis mesophyll specific promoter , and a vacuolar membrane targeting syntaxin AtVAM3/SYP22. We generated two independent homozygous Arabidopsis pRBCS1A-TCV lines expressing under the control of . Quantitative RT-PCR showed that the transgene was expressed specifically in shoots of pRBCS1A-TCV lines.
View Article and Find Full Text PDFSQSTM1/p62, hereinafter referred to as p62, is a stress-induced cellular protein that interacts with various signaling proteins as well as ubiquitinated proteins to regulate a variety of cellular functions and cell survival. Methylmercury (MeHg) exposure increases the levels of p62, the latter playing a protective role in MeHg-induced toxicity. However, the underlying mechanism by which p62 alleviates MeHg toxicity remains poorly understood.
View Article and Find Full Text PDFGadolinium-based contrast agents (GBCAs) are widely used to improve tissue contrast during magnetic resonance imaging. Exposure to GBCAs can result in gadolinium deposition within human tissues and has become a clinical concern because of the potential toxic effects of free gadolinium (Gd). Here, we report the impact of a single administration of GBCAs (Omniscan and Gadovist), and Gd on mouse tissues.
View Article and Find Full Text PDFFor a better understanding of metal-ligand interaction and its function in cells, we developed an easy, sensitive, and high-throughput method to quantify ligand-metal(loid) binding affinity under physiological conditions by combining ligand-attached affinity beads and inductively coupled plasma-optical emission spectrometry (ICP-OES). Glutathione (GSH) and two phytochelatins (PC2 and PC3, small peptides with different numbers of free thiols) were employed as model ligands and attached to hydrophilic beads. The principle of the assay resembles that of affinity purification of proteins in biochemistry: metals binding to the ligand on the beads and the rest in the buffer are separated by a spin column and quantified by ICP-OES.
View Article and Find Full Text PDFAn organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive.
View Article and Find Full Text PDFMethylmercury (MeHg) is a hazardous environmental pollutant that causes serious toxicity in humans and animals, as well as proteotoxic stress. In our previous study, we found that MeHg induces the expression of p62/sequestosome 1 (p62) that selectively targets ubiquitinated proteins for degradation via autophagy, and that p62 might protect cells against MeHg toxicity. To further investigate the role of p62 in MeHg-induced stress responses, we evaluated the role of p62 in MeHg-induced endoplasmic reticulum (ER) stress in p62 knockout (p62KO) mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFMercury superfamily proteins, i.e. inner membrane-spanning proteins (MerC, MerE, MerF and MerT) and a periplasmic mercury-binding protein (MerP), transport mercury into the cytoplasm.
View Article and Find Full Text PDFAcute and chronic arsenic (As) toxicity is a global health issue affecting millions of people, which leads to inactivation of over 200 enzymes, particularly those involved in cellular energy pathways and DNA synthesis and repair. The fern acts as a hyperaccumulator of As and may be useful for phytoremediation to reduce disposal risks by utilizing metal-enriched plant biomass in energy and metal recovery. However, these ferns grow in limited environments and its transplantation and transport can be challenging.
View Article and Find Full Text PDFFor researchers in the plant metal field, the agar reagent used for the solid plate medium is a problematic factor because application of different agar types and even a different lot of the same agar type can mask the plant metal-related phenotypes and impair the reproducibility. In this study, we systematically assessed effects of different agar reagents on metal(loid) sensitivity and element accumulation of the Arabidopsis metal sensitive mutants. Three established mutants (, , and ), and three different types of purified agar reagents (Type A, Type E, and Nacalai) with two independent batches for each reagent were subjected to the analyses.
View Article and Find Full Text PDFGadolinium-based contrast agents (GBCAs) are widely used in clinical magnetic resonance imaging (MRI). Free gadolinium ions (Gd) released from GBCAs potentially increase the risk of GBCA-related toxicity. However, the cellular responses to Gd and the underlying mechanisms responsible for protection against Gd remain poorly understood.
View Article and Find Full Text PDFMercury accumulation in Arabidopsis shoots is accelerated by endodermis specific expression of fusion proteins of a bacterial mercury transporter MerC and a plant SNARE SYP121 under control of SCARECROW promoter. We previously demonstrated that the CaMV 35S RNA promoter (p35S)-driven ubiquitous expression of a bacterial mercury transporter MerC, fused with SYP121, an Arabidopsis SNARE protein increases mercury accumulation of Arabidopsis. To establish an improved fine-tuned mercury transport system in plants for phytoremediation, the present study generated and characterized transgenic Arabidopsis plants expressing MerC-SYP121 specifically in the root endodermis, which is a crucial cell type for root element uptake.
View Article and Find Full Text PDFSome methylmercury (MeHg) is converted to inorganic mercury (Hg2+) after incorporation into human and animal tissues, where it can remain for a long time. To determine the overall toxicity of MeHg in tissues, studies should evaluate low concentrations of Hg2+. Although demethylation is involved, the participating enzymes or underlying mechanisms are unknown; in addition, the low cell membrane permeability of Hg2+ makes these analyses challenging.
View Article and Find Full Text PDFFor mercury phytoextraction, we previously demonstrated in Arabidopsis thaliana that a constitutive and ubiquitous promoter-driven expression of a bacterial mercury transporter MerC fused with SYP121, a plant SNARE for plasma membrane protein trafficking increases plant mercury accumulation. To advance regulation of ectopic expression of the bacterial transporter in the plant system, the present study examined whether merC-SYP121 expression driven by a root epidermis specific promoter (pEpi) is sufficient to enhance mercury accumulation in plant tissues. We generated five independent transgenic Arabidopsis plant lines (hereafter pEpi lines) expressing a transgene encoding MerC-SYP121 N-terminally tagged with a fluorescent protein mTRQ2 under the control of pEpi, a root epidermal promoter.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2019
Methylmercury (MeHg) is a highly toxic pollutant, and is considered hazardous to human health. In our previous study, we found that MeHg induces autophagy and that Atg5-dependent autophagy plays a protective role against MeHg toxicity. To further characterize the role of autophagy in MeHg-induced toxicity, we examined the impact of autophagy on microtubules and nuclei under MeHg exposure using Atg5KO mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFMethylmercury (MeHg) is one of the most toxic environmental pollutants, presenting a serious health hazard worldwide. In this study, we examined the potential of derivatives of oleanolic acid (OA), such as OA 3-glucoside, OA 28-glucoside, and OA 3,28-diglucoside, to mitigate MeHg toxicity in vitro and in vivo. We found that OA 3-glucoside suppressed the cellular MeHg uptake by 63.
View Article and Find Full Text PDFFish consumption has both the risk of methylmercury (MeHg) poisoning and the benefit of obtaining n-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). However, the cellular interaction between MeHg and PUFAs remains unknown. Therefore, the aim of this study was to investigate the effects of MeHg and n-3 PUFA exposure on mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFCancer cells enhance autophagic activity as a survival measure against metabolic and therapeutic stresses. The inhibition of autophagy may represent a valuable sensitizing target for cancer treatment. Recently, we examined the ability of various cytochalasins to inhibit autophagy and demonstrated the potent inhibitory effect of cytochalasin E (CE) on autophagic flux.
View Article and Find Full Text PDF