Publications by authors named "Masaki Tahara"

Ferromagnetic shape memory alloys (FSMAs), which are potential candidates for future technologies (i.e., actuators in robots), have been paid much attention for their high work per volume and rapid response as external stimulation, such as a magnetic field, is imposed.

View Article and Find Full Text PDF

The phase stability, mechanical properties, and functional properties of Ti-5.5Al-11.8[Mo] alloys are focused on in this study by substituting 3d transition metal elements (V, Cr, Co, and Ni) for Mo as β-stabilizers to achieve similar β phase stability and room temperature (RT) superelasticity.

View Article and Find Full Text PDF

Ni-Mn-Ga single crystals (SC) exhibiting a giant magnetic field induced strain (MFIS), resulting from twin boundaries rearrangements, are excellent materials for novel actuators although enhanced brittleness and high costs are remaining the issues for applications. In polycrystalline state Ni-Mn-Ga alloys show small MFIS due to grain boundary constraints. By simple size reduction of the mentioned materials it is hardly possible to create quasi-two-dimensional MFIS actuators on the microscale with a pertinent out-of-plane performance.

View Article and Find Full Text PDF

For the further development of biocompatible metastable β (bcc) Ti alloys, the purpose of this study is to evaluate the potential of bismuth (Bi) addition in terms of shape memory properties and phase stability. It was found that the shape memory effect appeared in Ti-5Cr-1.6Bi (mol%) alloy.

View Article and Find Full Text PDF

In view of the urgent demands of shape memory alloys (SMAs) for biomedical applications due to the world population aging issue, the mechanical properties and functionalities of the biocompatible Ti-Au-Cr-based SMAs, which are tailored by Ta additions, have been developed in this study. The quaternary SMAs were successfully manufactured by physical metallurgy techniques and their mechanical properties and functionalities were examined. In the continuous tensile tests, it was found that the correlation between the yielding strength and phase stability followed a typical trend of mechanical behavior of SMAs, showing the lowest yielding strength at the metastable β-parent phase.

View Article and Find Full Text PDF

The achievement of room-temperature (RT) superelasticity in a Ti-Mo-Al ternary alloy system through the addition of a relatively high concentration of Al to manipulate the phase stability of the ω phase is realized in this study. The composition of the Ti-6 mol% Mo (Ti-11.34 mass% Mo) alloy was designated as the starting alloy, while 5 mol% Al (=2.

View Article and Find Full Text PDF

Owing to the world population aging, biomedical materials, such as shape memory alloys (SMAs) have attracted much attention. The biocompatible Ti-Au-Ta SMAs, which also possess high X-ray contrast for the applications like guidewire utilized in surgery, were studied in this work. The alloys were successfully prepared by physical metallurgy techniques and the phase constituents, microstructures, chemical compositions, shape memory effect (SME), and superelasticity (SE) of the Ti-Au-Ta SMAs were also examined.

View Article and Find Full Text PDF

The requirements for biomedical materials have been raised greatly due to the rapidly aging global population. Shape memory alloys (SMAs) are indeed promising materials for biomedical applications due to their controllable shape deformation via the manipulation of temperature and/or stress. This study investigated the enhancement of the fundamental mechanical properties and the shape memory effect (SME) in the Ti-Cr-based alloys via the modification of Au and Cu.

View Article and Find Full Text PDF

To enhance the mechanical properties (e.g., strength and elongation) of the face-centered cubic (fcc) α-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of AuCuAl) via the manipulation of alloy compositions.

View Article and Find Full Text PDF

In this work, micro-compression tests are performed at various temperatures with Ti-27Nb (at.%) single crystalline pillars to investigate anisotropic deformation behavior, including the shape memory effect. In non-tapered single-crystal pillars with loading directions parallel to [001], [011], and [111], transformation strain and stress show orientation dependence.

View Article and Find Full Text PDF

To date, most distributed Brillouin sensors for structural health monitoring have employed glass optical fibers as sensing fibers, but they are inherently fragile and cannot withstand strains of >3%. This means that the maximal detectable strain of glass-fiber-based Brillouin sensors was ~3%, which is far from being sufficient for monitoring the possible distortion caused by big earthquakes. To extend this strain dynamic range, polymer optical fibers (POFs) have been used as sensing fibers.

View Article and Find Full Text PDF

β-Ti alloys have attracted considerable attention as new biomedical shape memory alloys. Given the critical importance of the plastic deformation in the martensite phase for the shape memory effect and superelasticity, we investigated here the plastic deformation behaviour of a single crystal of α″ (orthorhombic) martensite of Ti-27 mol%Nb shape memory alloy obtained by the stress-induced martensitic transformation of a single crystal of the parent β phase. Four operative plastic deformation modes were observed, including two dislocation slips and two twinnings.

View Article and Find Full Text PDF