Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action.
View Article and Find Full Text PDFTemperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C.
View Article and Find Full Text PDFMicrotubule organization and reorganization during the cell cycle are achieved by regulation of the number, distribution and activity of microtubule-organizing centres (MTOCs). In fission yeast, the Mto1/2 complex determines the activity and distribution of cytoplasmic MTOCs. Upon mitosis, cytoplasmic microtubule nucleation ceases; inactivation of the Mto1/2 complex is triggered by Mto2 hyperphosphorylation.
View Article and Find Full Text PDFSake yeasts have a range of brewing characteristics that are particularly beneficial for sake making including high ethanol fermentability, high proliferative capacity at low temperatures, lactic acid tolerance, and high ester productivity. On the other hand, sake yeasts also accumulate a diverse range of functional components. For example, significantly greater accumulation of S-adenosylmethionine (SAM), a compound that plays important regulatory roles in a range of biological processes as a major donor of methyl groups, occurs in sake yeasts compared to other microorganisms.
View Article and Find Full Text PDFJ Fungi (Basel)
September 2022
Protein synthesis is strictly regulated during replicative aging in yeast, but global translational regulation during replicative aging is poorly characterized. To conduct ribosome profiling during replicative aging, we collected a large number of dividing aged cells using a miniature chemostat aging device. Translational efficiency, defined as the number of ribosome footprints normalized to transcript abundance, was compared between young and aged cells for each gene.
View Article and Find Full Text PDFTo elucidate the mechanism underlying tetrahydrofolate (THF) accumulation in sake yeast strains compared with that in laboratory yeast strains, we performed a quantitative trait locus (QTL) analysis. The results revealed that the sake yeast allele contributes to an increase in the ratio of THF to the total folate content in sake yeast.
View Article and Find Full Text PDFAdenosine kinase ()-deficient mutants can be obtained from cordycepin-resistant strains, and the disruption of causes -adenosylmethionine (SAM) accumulation. To breed a high-SAM-accumulating yeast strain without genetic manipulation for industrial purposes, we bred a cordycepin-resistant strain using sake yeast kyokai No. 9 as the parent strain with a mutation in adenosine kinase () and acquired high-SAM-accumulating strain.
View Article and Find Full Text PDFSko1 plays a key role in the control of gene expression by osmotic and oxidative stress in yeast. We demonstrate that the decrease in chronological lifespan (CLS) of Δ cells was suppressed by deletion. Δ single mutant cells were shown to have a longer CLS, thus implicating Sko1 in the regulation of their CLS.
View Article and Find Full Text PDFThe mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2018
The proper organization of microtubules is essential for many cellular functions. Microtubule organization and reorganization are highly regulated during the cell cycle, but the underlying mechanisms remain elusive. Here we characterized unusual interphase microtubule organization in fission yeast nuclear export mutant crm1-124.
View Article and Find Full Text PDFCell polarity is coordinately regulated with the cell cycle. Growth polarity of the fission yeast Schizosaccharomyces pombe transits from monopolar to bipolar during G2 phase, termed NETO (new end take off). Upon perturbation of DNA replication, the checkpoint kinase Cds1/CHK2 induces NETO delay through activation of Ca/calmodulin-dependent protein phosphatase calcineurin (CN).
View Article and Find Full Text PDFMany factors contribute to palatability. In order to evaluate the palatability of Japanese alcohol sake paired with certain dishes by integrating multiple factors, here we applied an evaluation method previously reported for palatability of cheese by multiple regression analysis based on 3 subdomain factors (rewarding, cultural, and informational). We asked 94 Japanese participants/subjects to evaluate the palatability of sake (1st evaluation/E1 for the first cup, 2nd/E2 and 3rd/E3 for the palatability with aftertaste/afterglow of certain dishes) and to respond to a questionnaire related to 3 subdomains.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2017
S-Adenosylmethionine (SAM) is a key component of sulphur amino acid metabolism in living organisms and is synthesised from methionine and adenosine triphosphate by methionine adenosyltransferase. This molecule serves as the main biological methyl donor due to its active methylthio ether group. Notably, SAM has shown beneficial effects in clinical trials for the treatment of alcoholic liver disease, depression and joint pain.
View Article and Find Full Text PDFDietary restriction (DR), such as calorie restriction (CR) or methionine (Met) restriction, extends the lifespan of diverse model organisms. Although studies have identified several metabolites that contribute to the beneficial effects of DR, the molecular mechanism underlying the key metabolites responsible for DR regimens is not fully understood. Here we show that stimulating S-adenosyl-l-methionine (AdoMet) synthesis extended the lifespan of the budding yeast Saccharomyces cerevisiae The AdoMet synthesis-mediated beneficial metabolic effects, which resulted from consuming both Met and ATP, mimicked CR.
View Article and Find Full Text PDFSake yeasts are ideally suited for sake making, producing higher levels of ethanol, proliferating at lower temperatures, and producing greater levels of various aromatic components and nutrients than laboratory yeasts. To elucidate the mechanism underlying S-adenosylmethionine (SAM) accumulation in sake yeast strains compared with that in laboratory yeast strains, we performed quantitative trait locus (QTL) analysis and identified a significant QTL on chromosome VIII. Of the 165 genes mapped at 49.
View Article and Find Full Text PDFIn high-quality sake brewing, the cerulenin-resistant sake yeast K1801 with high ethyl caproate-producing ability has been used widely; however, K1801 has a defective spindle assembly checkpoint (SAC). To identify the mutation causing this defect, we first searched for sake yeasts with a SAC-defect like K1801 and found that K13 had such a defect. Then, we searched for a common SNP in only K1801 and K13 by examining 15 checkpoint-related genes in 23 sake yeasts, and found 1 mutation, R48P of Cdc55, the PP2A regulatory B subunit that is important for the SAC.
View Article and Find Full Text PDFIdentification of biologically active natural compounds that promote health and longevity, and understanding how they act, will provide insights into aging and metabolism, and strategies for developing agents that prevent chronic disease. The garlic-derived thioallyl compounds S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have been shown to have multiple biological activities. Here we show that SAC and SAMC increase lifespan and stress resistance in Caenorhabditis elegans and reduce accumulation of reactive oxygen species (ROS).
View Article and Find Full Text PDFIn the brewing of high-quality sake such as Daiginjo-shu, the cerulenin-resistant sake yeast strains with high producing ability to the flavor component ethyl caproate have been used widely. Genetic stability of sake yeast would be important for the maintenance of both fermentation properties of yeast and quality of sake. In eukaryotes, checkpoint mechanisms ensure genetic stability.
View Article and Find Full Text PDFCalcineurin, which is a Ca(2+)/calmodulin-dependent protein phosphatase, is a key mediator in calcium signaling in diverse biological processes and of clinical importance as the target of the immunosuppressant FK506. To identify a mutant(s) in which calcineurin is activated, inhibiting cellular growth as a result, we screened for a mutant(s) whose temperature sensitivity would be suppressed by FK506 from the budding yeast non-essential gene deletion library. We found that the temperature sensitivity of cells in which the conserved Verprolin VRP1 gene had been deleted, which gene is required for actin organization and endocytosis, was suppressed by either FK506 or by cnb1 deletion.
View Article and Find Full Text PDFLow protein content and sufficient grain rigidity are desired properties for the rice used in high-quality sake brewing such as Daiginjo-shu (polishing ratio of the rice, less than 50%). Two kinds of rice, sake rice (SR) and cooking rice (CR), have been used for sake brewing. Compared with those of SR, analyses of CR for high-quality sake brewing using highly polished rice have been limited.
View Article and Find Full Text PDFThe nematode worm Caenorhabditis elegans provides a powerful system for elucidating how genetic, metabolic, nutritional, and environmental factors influence aging. The mechanistic target of rapamycin (mTOR) kinase is important in growth, disease, and aging and is present in the mTORC1 and mTORC2 complexes. In diverse eukaryotes, lifespan can be increased by inhibition of mTORC1, which transduces anabolic signals to stimulate protein synthesis and inhibit autophagy.
View Article and Find Full Text PDFHog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
July 2014
The Japanese high-quality sake Daiginjo-shu is made from highly polished rice (polishing ratio, less than 50%). Here we showed that the sake rice Koshitanrei (KOS) has an excellent polishing property. Rice grains of KOS had the same lined white-core region as the sake rice Yamadanishiki (YAM).
View Article and Find Full Text PDF