Publications by authors named "Masaki Kashiwada"

Article Synopsis
  • The ST2 gene, initially recognized for its response to growth factors and oncogenic stress, was found to be expressed when oncogenic Ras mutant is present, leading to the production of ST2 and ST2L proteins.
  • Overexpression of ST2 in mouse fibroblast cells significantly boosted cellular transformation induced by the Ras (G12V) mutation, while silencing ST2 expression effectively hindered this transformation process.
  • The study highlights how ST2 gene products are crucial for cellular transformation and proliferation, indicating that their role operates independently of the IL-33 stimulation pathway and influences cell cycle progression by affecting Rb phosphorylation.
View Article and Find Full Text PDF

NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases.

View Article and Find Full Text PDF

Circadian clocks regulate numerous physiological processes that vary across the day-night (diurnal) cycle, but if and how the circadian clock regulates the adaptive immune system is mostly unclear. Interleukin-17-producing CD4(+) T helper (T(H)17) cells are proinflammatory immune cells that protect against bacterial and fungal infections at mucosal surfaces. Their lineage specification is regulated by the orphan nuclear receptor RORγt.

View Article and Find Full Text PDF

Suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3) are inhibitors of the Janus tyrosine kinase (JAK)/signal transducers and activators of transcription (STAT) pathway and function in a negative feedback loop during cytokine signaling. Abl transformation is associated with constitutive activation of JAK/STAT-dependent signaling. However, the mechanism by which Abl oncoproteins bypass SOCS inhibitory regulation remains poorly defined.

View Article and Find Full Text PDF

CD40 is a cell surface receptor important in the activation of antigen-presenting cells during immune responses. In macrophages and dendritic cells, engagement of CD40 by its ligand CD154 provides signals critical for anti-microbial and T cell-mediated immune responses, respectively. In B cells, CD40 signaling has a major role in regulating cell proliferation, antibody production, and memory B cell development.

View Article and Find Full Text PDF

Type 2 T helper (T(H)2) cells are critical for the development of allergic immune responses; however, the molecular mechanism controlling their effector function is still largely unclear. Here, we report that the transcription factor NFIL3/E4BP4 regulates cytokine production and effector function by T(H)2 cells. NFIL3 is highly expressed in T(H)2 cells but much less in T(H)1 cells.

View Article and Find Full Text PDF

Antigen presentation by mature dendritic cells (DCs) is the first step for initiating adaptive immune responses. DCs are composed of heterogeneous functional subsets; however, the molecular mechanisms that regulate differentiation of specific DC subsets are not understood. Here, we report that the basic leucine zipper transcription factor NFIL3/E4BP4 is essential for the development of CD8α(+) conventional DCs (cDCs).

View Article and Find Full Text PDF

Regulation of innate inflammatory responses against the enteric microbiota is essential for the maintenance of intestinal homeostasis. Key participants in innate defenses are macrophages. In these studies, the basic leucine zipper protein, NFIL3, is identified as a regulatory transcription factor in macrophages, controlling IL-12 p40 production induced by bacterial products and the enteric microbiota.

View Article and Find Full Text PDF

IL-4 signaling promotes IgE class switching through STAT6 activation and the induction of Ig germ-line epsilon (GLepsilon) transcription. Previously, we and others identified a transcription factor, Nfil3, as a gene induced by IL-4 stimulation in B cells. However, the precise roles of nuclear factor, IL-3-regulated (NFIL3) in IL-4 signaling are unknown.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs.

View Article and Find Full Text PDF

The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice.

View Article and Find Full Text PDF

NIDDM is characterized by progressive insulin resistance and the failure of insulin-producing pancreatic beta cells to compensate for this resistance. Hyperinsulinemia, inflammation, and prolonged activation of the insulin receptor (INSR) have been shown to induce insulin resistance by decreasing INSR substrate (IRS) protein levels. Here we describe a role for SOCS7 in regulating insulin signaling.

View Article and Find Full Text PDF