Publications by authors named "Masaki Iwata"

Despite the evident demand and promising potential of disulfide-functionalized amino acids and peptides in linker chemistry and peptide drug discovery, those disulfurated specifically at the α-position constitute a unique yet rather highly underexplored chemical space. In this study, we have developed a method for preparing -linked amino acid/peptide derivatives through a base-catalyzed disulfuration reaction of azlactones, followed by the ring-opening functionalization. The disulfuration reaction proceeds under mild conditions, yielding disulfurated azlactones in excellent yields across a variety of -dithiophthalimides and diverse azlactones derived from various amino acids and peptides.

View Article and Find Full Text PDF

This study describes the concise exfoliation of multilayer TiCT MXene containing residual aluminum atoms. Treatment with tetramethylammonium base in a co-solvent of tetrahydrofuran and HO produced single-layer TiCT , which was confirmed atomic force microscopy observations, with an electrical conductivity 100+ times that of TiCT prepared under previously reported conditions. The scanning electron microscopy and X-ray diffraction measurements showed that the exfoliated single-layer TiCT MXenes were reconstructed to assembled large-domain layered films, enabling excellent macroscale electric conductivity.

View Article and Find Full Text PDF

The biological effects of the Fukushima nuclear accident have been examined in the pale grass blue butterfly, (Lepidoptera: Lycaenidae). In previous internal exposure experiments, larvae were given field-collected contaminated host plant leaves that contained up to 43.5 kBq/kg (leaf) of radioactive caesium.

View Article and Find Full Text PDF

Butterfly eyespot color patterns are traditionally explained by the gradient model, where positional information is stably provided by a morphogen gradient from a single organizer and its output is a set of non-graded (or graded) colors based on pre-determined threshold levels. An alternative model is the induction model, in which the outer black ring and the inner black core disk of an eyespot are specified by graded signals from the primary and secondary organizers that also involve lateral induction. To examine the feasibility of these models, we analyzed eyespot color gradients, boundary scales, and rudimentary eyespots in various nymphalid butterflies.

View Article and Find Full Text PDF

Colour pattern development of butterfly wings has been studied from several different approaches. However, developmental changes in the pupal wing tissues have rarely been documented visually. In this study, we recorded real-time developmental changes of the pupal whole wings of 9 nymphalid, 2 lycaenid, and 1 pierid species in vivo, from immediately after pupation to eclosion, using the forewing-lift method.

View Article and Find Full Text PDF

Background: Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center.

View Article and Find Full Text PDF

The pale grass blue butterfly has been used to assess the biological effects of the Fukushima nuclear accident. Zizeeria and Zizina are two closely related genera of grass blue butterflies that are widely distributed in tropical to temperate Asia, Australia, and Africa, making them suitable environmental indicators for these areas. However, the morphological features of the immature stages have been examined only in fragmentary fashion.

View Article and Find Full Text PDF

Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae.

View Article and Find Full Text PDF

The nymphalid groundplan has been proposed to explain diverse butterfly wing color patterns. In this model, each symmetry system is composed of a core element and a pair of paracore elements. The development of this elemental configuration has been explained by the induction model for positional information.

View Article and Find Full Text PDF

Background: Long-term monitoring of the biological impacts of the radioactive pollution caused by the Fukushima nuclear accident in March 2011 is required to understand what has occurred in organisms living in the polluted areas. Here, we investigated spatial and temporal changes of the abnormality rate (AR) in both field-caught adult populations and laboratory-reared offspring populations of the pale grass blue butterfly, Zizeeria maha, which has generation time of approximately one month. We monitored 7 localities (Fukushima, Motomiya, Hirono, Iwaki, Takahagi, Mito, and Tsukuba) every spring and fall over 3 years (2011-2013).

View Article and Find Full Text PDF

Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya.

View Article and Find Full Text PDF

Background: On August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers.

View Article and Find Full Text PDF

Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots.

View Article and Find Full Text PDF

Background: Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory.

View Article and Find Full Text PDF

In the present study, we established a simple and physiologically acceptable in vitro assay system to measure H2O2 generated by human immunoglobulin G (IgG) and other proteins. In addition, the effects of various drugs were also tested in this method. We found that UV irradiation (280 nm) of the test solutions for 1 h at 37 degrees C produced suitable conditions to test the effects of these drugs.

View Article and Find Full Text PDF

The purpose of this study was to establish a simple and rapid method for selecting a nonionic surfactant to prepare an emulsion that can maintain a stable emulsification phase. As an index of the degree of emulsification, the white chromaticity of the prepared sample was measured using a color difference meter. When liquid paraffin was used as an oil, the color difference (dE(H)) was shown as a change in a V-shaped curve depending on changes in the hydrophile-lipophile balance (HLB) number of sorbitan ester, polyoxyethylene sorbitan ester, or polyethyleneglycol ester.

View Article and Find Full Text PDF