Water flows through micro-orifices are important because they occur in various fields, such as biology, medical science, chemistry, and engineering. We have reported in previous work that organic matter was generated in micro-orifices after water flowed through the orifice, and we proposed that the organic matter was synthesized from nonorganic materials, including CO and N dissolved in water from air, and water via the action of hydroxyl radicals produced by the flow through the micro-orifice. In the present study, we examined whether organic materials are produced in the water outside of the orifices in addition to that in the orifice.
View Article and Find Full Text PDFMicro-fluid mechanics is an important area of research in modern fluid mechanics because of its many potential industrial and biological applications. However, the field is not fully understood yet. In previous work, when passing ultrapure water (UPW) in which air was dissolved (UPW*) through micro-orifices, we found that the flow velocity decreased and stopped over time, and membranes were frequently formed in the orifice when the flow stopped.
View Article and Find Full Text PDFWe investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds.
View Article and Find Full Text PDFWe propose a new disorder-induced insulator-metal transition of one-electron states, which may be called the "inverse Anderson transition." We first make a highly degenerated localized states by constructing a three-dimensional periodic system possessing only flat dispersion relations. When we introduce a disorder into it, a finite-size scaling of the level statistics shows two clear (localization-delocalization and delocalization-localization) transitions for a wide range of the energy, with increasing the degree of disorder.
View Article and Find Full Text PDFThe origin and early evolution of genetic codon system and early mRNAs were analyzed from a viewpoint of primordial gene theory and the poly-tRNA theory. A hypothetical 25-amino acid (aa)-primordial peptide was deduced from internal aa-sequence homology of adenylate kinases. Theoretical models were made which can reasonably explain how primitive tRNA(s) could have had converted to be earliest mRNAs via interactions between presumptive anticodons and (poly-)tRNA ribozyme.
View Article and Find Full Text PDF