Nicotine enhances attention, working memory and recognition. One of the brain regions associated with these effects of nicotine is the medial prefrontal cortex (mPFC). However, cellular mechanisms that induce the enhancing effects of nicotine remain unclear.
View Article and Find Full Text PDFStress augments the rewarding memory of cocaine, which plays a critical role in inducing cocaine craving. However, the neurobiological mechanisms underlying the enhancing effect of stress remain unclear. Here, we show that noradrenaline (NA) transmission in the medial prefrontal cortex (mPFC) mediates stress-induced enhancement of cocaine craving.
View Article and Find Full Text PDFPsychopharmacology (Berl)
July 2019
Rationale: N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-L-valine methyl ester (5F-AMB) is a synthetic cannabinoid that has been distributed recently. Although inhalation of 5F-AMB produces adverse effects, such as impaired memory and disturbed consciousness, in humans, the psychopharmacological effects of 5F-AMB in rodents have not been investigated.
Objectives: We first examined the effects of intraperitoneal and intracerebroventricular injections of 5F-AMB on anxiety-like behavior and locomotor activity in the open field (OF) test and recognition memory in the novel object recognition test (NOR) in C57BL/6J mice.
In drug addiction, environmental stimuli previously associated with cocaine use readily elicit cocaine-associated memories, which persist long after abstinence and trigger cocaine craving and consumption. Although previous studies suggest that the medial prefrontal cortex (mPFC) is involved in the expression of cocaine-addictive behaviors, it remains unclear whether excitatory and inhibitory neurons in the mPFC are causally related to the formation and retrieval of cocaine-associated memories. To address this issue, we used the designer receptors exclusively activated by designer drugs (DREADD) technology combined with a cocaine-induced conditioned place preference (CPP) paradigm.
View Article and Find Full Text PDFCocaine-associated environmental cues elicit craving and relapse to cocaine use by recalling the rewarding memory of cocaine. However, the neuronal mechanisms underlying the expression of cocaine-associated memory are not fully understood. Here, we investigated the possible contribution of γ-aminobutyrate (GABA)ergic neurons in the nucleus accumbens (NAc), a key brain region associated with the rewarding and reinforcing effects of cocaine, to the expression of cocaine-associated memory using the conditioned place preference (CPP) paradigm combined with designer receptors exclusively activated by designer drugs (DREADD) technology.
View Article and Find Full Text PDFRationale: 5F-AMB is one of the synthetic cannabinoids (SCs) designed to potentiate the ability to activate cannabinoid 1 (CB1) receptors and is abused worldwide. Although inhalation of 5F-AMB elicits serious adverse effects including impaired memory and consciousness, it is not known whether and how 5F-AMB affects the activity of pyramidal neurons in the medial prefrontal cortex (mPFC), a brain region associated with higher functions such as memory and cognition.
Objectives: In the present study, we examined the effects of 5F-AMB on mPFC layer V (L5) pyramidal neurons using in vitro whole-cell patch-clamp recordings.