Background: HER2 testing for samples from recurrent or metastatic disease is recommended by the 2013 update of the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines and cytological analysis can be applied to several types of metastatic lesions. However, the practical method to assess the HER2 testing of breast cancer cytology specimens has yet to be resolved. Therefore, we conducted the bright-field HER2 dual in situ hybridization (DISH) assay on cell blocks (CBs) prepared from breast cancer cell samples as a validation study before clinical use.
View Article and Find Full Text PDFBackground: Human epidermal growth factor receptor 2 (HER2) testing of samples from recurrent or metastatic breast cancer is recommended by the 2013 update of the American Society of Clinical Oncology/College of American Pathologists guidelines. Although cytological analysis can be applied to several types of metastatic lesions, the practical method for HER2 testing of cytological specimens is yet to be resolved. We conducted immunohistochemical (IHC) staining for HER2 in breast cancer cell blocks (CBs) and compared the results with those from the corresponding histological specimens.
View Article and Find Full Text PDFBackground: While HER2 gene detection in cytological specimens using fluorescence in situ hybridization (FISH) has been reported, the appropriate criteria for such specimens remain controversial.
Methods: Fine needle aspiration (FNA) samples collected from surgically resected breast cancer specimens were rinsed in a cytopreservative solution containing fixative. Then, slides of the FNA samples were prepared by liquid-based cytology (LBC) (ThinPrep system, Hologic) according to the manufacturer's instructions, and a PathVision HER2 DNA probe kit (Abbott) was used for FISH staining.
We used four mutants having albino or pale green phenotypes with disrupted nuclear-encoded chloroplast proteins to analyze the regulatory system of metabolites in chloroplast. We performed an integrated analyses of transcriptomes and metabolomes of the four mutants. Transcriptome analysis was carried out using the Agilent Arabidopsis 2 Oligo Microarray, and metabolome analysis with two mass spectrometers; a direct-infusion Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR/MS) and a gas chromatograph-time of flight mass spectrometer.
View Article and Find Full Text PDFPlants respond and adapt to drought, cold and high-salinity stresses in order to survive. In this study, we applied Arabidopsis Affymetrix tiling arrays to study the whole genome transcriptome under drought, cold, high-salinity and ABA treatment conditions. The bioinformatic analysis using the tiling array data showed that 7,719 non-AGI transcriptional units (TUs) exist in the unannotated "intergenic" regions of Arabidopsis genome.
View Article and Find Full Text PDFTo study the functions of nuclear genes involved in chloroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on one of these albino mutants, designated apg3-1 (for a lbino or p ale g reen mutant 3). A gene encoding a ribosome release factor 1 (RF1) homologue was disrupted by the insertion of a Ds transposon into the APG3 gene; a T-DNA insertion into the same gene caused a similar phenotype (apg3-2).
View Article and Find Full Text PDFBackground: Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to show local distribution within promoters, and this feature has been successfully utilized for extraction of promoter constituents from human genome.
Results: LDSS (Local Distribution of Short Sequences) profiles of short sequences along the plant promoter have been analyzed in silico, and hundreds of hexamer and octamer sequences have been identified as having localized distributions within promoters of Arabidopsis thaliana and rice.
More than 5% of all genes in the Arabidopsis thaliana genome have been assumed to code for transcription factors. However, it has been difficult to accurately identify them. To construct proper sets of transcription factors, we used PSI-BLAST and InterProScan, and also checked several families manually.
View Article and Find Full Text PDFBackground: In order to understand microarray data reasonably in the context of other existing biological knowledge, it is necessary to conduct a thorough examination of the data utilizing every aspect of available omic knowledge libraries. So far, a number of bioinformatics tools have been developed. However, each of them is restricted to deal with one type of omic knowledge, e.
View Article and Find Full Text PDFA comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation.
View Article and Find Full Text PDFAbscisic acid (ABA) is important in seed maturation, seed dormancy, stomatal closure, and stress response. Many genes that function in ABA signal transduction pathways have been identified. However, most important signaling molecules involved in the perception of the ABA signal or with ABA receptors have not been identified yet.
View Article and Find Full Text PDFThe RIKEN Arabidopsis Genome Encyclopedia (RARGE) database houses information on biological resources ranging from transcriptome to phenome, including RIKEN Arabidopsis full-length (RAFL) complementary DNAs (cDNAs), their promoter regions, Dissociation (Ds) transposon-tagged lines and expression data from microarray experiments. RARGE provides tools for searching by resource code, sequence homology or keyword, and rapid access to detailed information on the resources. We have isolated 245 946 RAFL cDNA clones and collected 11 933 transposon-tagged lines, which are available from the RIKEN Bioresource Center and are stored in RARGE.
View Article and Find Full Text PDFTranscriptional regulation in response to hyperosmotic, high-salinity and oxidative stress, and abscisic acid (ABA) treatment in Arabidopsis suspension-cultured cell line T87 was investigated with a cDNA microarray containing 7000 independent full-length Arabidopsis cDNAs. The transcripts of 102, 11, 84 and 73 genes were increased more than 5-fold within 5h after treatment with 0.5M mannitol, 0.
View Article and Find Full Text PDFWe mapped RIKEN Arabidopsis full-length (RAFL) cDNAs to the Arabidopsis thaliana genome to search for alternative splicing events. We used 278,734 full-length and 3'/5' terminal reads of the sequences of 220,214 RAFL cDNA clones for the analysis. Eighty-nine percent of the cDNA sequences could be mapped to the genome and were clustered in 17,130 transcription units (TUs).
View Article and Find Full Text PDFSalt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays.
View Article and Find Full Text PDFWhen challenged with the crucifer pathogen Colletotrichum higginsianum, Arabidopsis thaliana ecotype Columbia (Col-0) was colonized by the fungus within 2 to 3 days, developing brown necrotic lesions surrounded by a yellow halo. Lesions spread from the inoculation site within 3 to 4 days, and subsequently continued to expand until they covered the entire leaf. Electron microscopy confirmed that C.
View Article and Find Full Text PDFFull-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones were isolated. The 3'-end expressed sequence tags (ESTs) of all 155,144 RAFL cDNAs were clustered into 14,668 non-redundant cDNA groups, about 60% of predicted genes.
View Article and Find Full Text PDFWe examined the transcripts that showed changes among the ca.7,000 Arabidopsis full-length cDNAs under biotic and abiotic stresses. Expression of Arabidopsis phospholipase A IIA (AtPLA IIA) gene was induced by various treatments such as pathogen inoculation (Alternaria alternata, Alternaria brassicicola and Colletotrichum higginsianum), cold, high-salinity, abscisic acid, salicylic acid, methyl jasmonate, ethephon, paraquat, rose bengal, UV-C and CuSO(4)-treatments.
View Article and Find Full Text PDFFunctional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures.
View Article and Find Full Text PDFPlants respond and adapt to drought stress in order to survive under stress conditions. Several genes that respond to drought at the transcriptional level have been described, but there are few reports on genes involved in the recovery from dehydration. Analysis of rehydration-inducible genes should help not only to understand the molecular mechanisms of stress responses in higher plants, but also to improve the stress tolerance of crops by gene manipulation.
View Article and Find Full Text PDFFull-length cDNAs are essential for functional analysis of plant genes. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. Microarray technology is a powerful tool for identifying genes induced by environmental stimuli or stress and for analyzing their expression profiles in response to environmental signals.
View Article and Find Full Text PDFFull-length cDNAs are essential for functional analysis of plant genes in the post-sequencing era of the Arabidopsis genome. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. We have prepared a full-length cDNA microarray containing approximately 7000 independent, full-length cDNA groups to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time.
View Article and Find Full Text PDFFull-length complementary DNAs (cDNAs) are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We isolated 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones. The 3'-end expressed sequence tags (ESTs) of 155,144 RAFL cDNAs were clustered into 14,668 nonredundant cDNA groups, about 60% of predicted genes.
View Article and Find Full Text PDF