Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin, and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor-resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters.
View Article and Find Full Text PDFWe clarified the roles of VPH1 in Cryptococcus neoformans serotype D by examining the detailed phenotypes of VPH1-deficient cells (Δvph1) in terms of their capability to grow in acidic and alkaline pH, at a high temperature, and under high osmotic conditions, in addition to the involvement of VPH1 in copper (Cu) homeostasis and the expression of some C. neoformans virulence factors. Δvph1 could grow well on minimal medium (YNB) but exhibited hypersensitivity to 20 μM Cu due to the failure to induce Cu-detoxifying metallothionein genes (CMT1 and CMT2).
View Article and Find Full Text PDFThe successful biochemical and biophysical characterization of ABC transporters depends heavily on the choice of the heterologous expression system. Over the past two decades, we have developed a yeast membrane protein expression platform that has been used to study many important fungal membrane proteins. The expression host Saccharomyces cerevisiae ADΔΔ is deleted in seven major endogenous ABC transporters and it contains the transcription factor Pdr1-3 with a gain-of-function mutation that enables the constitutive overexpression of heterologous membrane protein genes stably integrated as single copies at the genomic PDR5 locus.
View Article and Find Full Text PDF: is an opportunistic pathogen that causes oral candidiasis. A previous study showed that Bgl2p and Ecm33p may mediate the interaction between the yeast and saliva-coated hydroxyapatite (SHA; a model for the tooth surface). This study investigated the roles of these cell wall proteins in the adherence of to SHA beads.
View Article and Find Full Text PDFis a thermally dimorphic fungus that causes penicilliosis, and become the third-most-common opportunistic fungal infection in immunocompromised patients in Southeast Asia. Azoles and amphotericin B have been introduced for the treatment, however, it is important to investigate possible mechanisms of azole resistance for future treatment failure. We identified 177 putative MFS transporters and classified into 17 subfamilies.
View Article and Find Full Text PDFThe 23-membered-ring macrolide tacrolimus, a commonly used immunosuppressant, also known as FK506, is a broad-spectrum inhibitor and an efflux pump substrate of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters. Little, however, is known about the molecular mechanism by which FK506 inhibits PDR transporter drug efflux. Thus, to obtain further insights we searched for FK506-resistant mutants of cells overexpressing either the endogenous multidrug efflux pump Pdr5 or its orthologue, Cdr1.
View Article and Find Full Text PDFAim: To investigate antifungal potential of Xylaria sp. BIOTEC culture collection (BCC) 1067 extract against the model yeast Saccharomyces cerevisiae.
Materials & Methods: Antifungal property of extract, reactive oxygen species levels and cell survival were determined, using selected deletion strains.
Gene duplications enable the evolution of novel gene function, but strong positive selection is required to preserve advantageous mutations in a population. This is because frequent ectopic gene conversions (EGCs) between highly similar, tandem-duplicated, sequences, can rapidly remove fate-determining mutations by replacing them with the neighboring parent gene sequences. Unfortunately, the high sequence similarities between tandem-duplicated genes severely hamper empirical studies of this important evolutionary process, because deciphering their correct sequences is challenging.
View Article and Find Full Text PDFThe edible, nitrate assimilating, yeast Candida utilis is a commercial food additive, and it is a potentially useful host for heterologous protein expression. A number of ATP-binding cassette (ABC) transporters are multidrug efflux pumps that can cause multidrug resistance in opportunistic pathogens. In order to develop optimal novel antimicrobial agents it is imperative to understand the structure, function and expression of these transporters.
View Article and Find Full Text PDFPenicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P.
View Article and Find Full Text PDFABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target.
View Article and Find Full Text PDFBackground: A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host.
View Article and Find Full Text PDFMannans are mannose polymers attached to cell wall proteins in all Candida species, including the pathogenic fungus Candida albicans. Mannans are sensed by pattern recognition receptors expressed on innate immune cells. However, the detailed structural patterns affecting immune sensing are not fully understood because mannans have a complex structure that includes α- and β-mannosyl linkages.
View Article and Find Full Text PDFOverexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10(6) member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH(2) -FFKWQRRR-CONH(2) , as a potent and stereospecific inhibitor of CaCdr1p.
View Article and Find Full Text PDFObjectives: A mechanism for the acquisition of high-level echinocandin resistance in Candida glabrata was investigated. FKS mutants were constructed to: determine whether clinically significant micafungin resistance requires a hot-spot mutation in FKS1 and a premature stop codon in FKS2, as was observed in a clinical isolate; select for variants with reduced susceptibility and locate mutations in FKS genes; and assess the roles of FKS1 and FKS2.
Methods: A panel of FKS mutants was constructed using micafungin-susceptible parents by site-directed mutagenesis.
Members of the pleiotropic drug resistance (PDR) family of ATP binding cassette (ABC) transporters consist of two homologous halves, each containing a nucleotide binding domain (NBD) and a transmembrane domain (TMD). The PDR transporters efflux a variety of hydrophobic xenobiotics and despite the frequent association of their overexpression with the multidrug resistance of fungal pathogens, the transport mechanism of these transporters is poorly understood. Twenty-eight chimeric constructs between Candida albicans Cdr1p (CaCdr1p) and Cdr2p (CaCdr2p), two closely related but functionally distinguishable PDR transporters, were expressed in Saccharomyces cerevisiae.
View Article and Find Full Text PDFZn[2]-Cys[6] binuclear transcription factors Upc2p and Ecm22p regulate the expression of genes involved in ergosterol biosynthesis and exogenous sterol uptake in Saccharomyces cerevisiae. We identified two UPC2/ECM22 homologues in the pathogenic fungus Candida glabrata which we designated CgUPC2A and CgUPC2B. The contribution of these two genes to sterol homeostasis was investigated.
View Article and Find Full Text PDFNihon Ishinkin Gakkai Zasshi
August 2010
Systemic fungal infections, caused by a wide variety of fungi, contribute to high mortality in humans with immunocompromised conditions. However, there are few classes of antifungal drugs available, limiting therapeutic options. Azoles are the most commonly used class of antifungals to treat many fungal infections, but resistance to azoles can be induced or, for some fungi, is an inherent property.
View Article and Find Full Text PDFFungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole.
View Article and Find Full Text PDFDrug susceptibility tests were performed with a series of Candida spp. in media supplemented with serum or bile. The azole susceptibilities of several medically important Candida spp.
View Article and Find Full Text PDFNihon Ishinkin Gakkai Zasshi
August 2009
The echinocandin (candin) class of antifungal drugs inhibit beta-1,3-glucan synthase and block synthesis of beta-1,3-glucan , an important polysaccharide in fungal cell walls. Candins are used widely for treatment of systemic infections caused by Candida and Aspergillus because of their high potency and low toxicity to humans. The incidence of candin resistance has been rare compared to that of azole resistance, although candin-resistant clinical isolates of C.
View Article and Find Full Text PDFFungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups.
View Article and Find Full Text PDFDrug resistance in various organisms including cancer cells, bacteria and fungi is a serious issue for human disease therapy, including use of anticancer drugs, antibiotics and antifungals, respectively. Candida strains resistant to the azole class of antifungal drugs, have been isolated frequently from HIV patients following prophylaxis with azole drugs such as fluconazole. Therefore, it is important to be aware of the emergence of drug-resistant clinical isolates, despite the recent introduction of new, effective classes of antifungal drugs such as the azole voriconazole, and the candin micafungin.
View Article and Find Full Text PDFHistoplasmosis is an infectious disease caused by inhaling spores of the fungal pathogen H. capsulatum and in Japan is considered an imported mycosis. However, some patients in Japan with histoplasmosis have no history of traveling overseas nor of risk of occupational exposure to Histoplasma.
View Article and Find Full Text PDFMost Candida krusei strains are innately resistant to fluconazole (FLC) and can cause breakthrough candidemia in immunocompromised individuals receiving long-term prophylactic FLC treatment. Although the azole drug target, Erg11p, of C. krusei has a relatively low affinity for FLC, drug efflux pumps are also believed to be involved in its innate FLC resistance.
View Article and Find Full Text PDF