Diabetes can lead to serious microvascular complications including proliferative diabetic retinopathy (PDR), the leading cause of blindness in adults. Recent studies using gene array technology have attempted to apply a hypothesis-generating approach to elucidate the pathogenesis of PDR, but these studies rely on mRNA differences, which may or may not be related to significant biological processes. To better understand the basic mechanisms of PDR and to identify potential new biomarkers, we performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from neovascular membranes obtained from PDR specimens and compared the results with those from non-vascular epiretinal membrane (ERM) specimens.
View Article and Find Full Text PDFBackground: Pericyte ghosts and acellular capillaries are well known as early histological changes resulting from diabetic retinopathy. These histological changes mean that the cell death of retinal microvessels has accelerated. It was reported that apoptosis of retinal microvascular cells (RMCs) was increased in diabetic patients.
View Article and Find Full Text PDF