Publications by authors named "Masakatsu Shibasaki"

Rocaglaol, a representative flavagline, has attracted significant attention because of its unique chemical structure and biological activities. This paper reports a mild and scalable copper-catalyzed enantioselective conjugate addition of benzofuran-3(2H)-ones to α,β-unsaturated thioamides. This method allows for the concise synthesis of all possible stereoisomers of a key intermediate of rocaglaol and its derivatives in a highly diastereo- and enantioselective manner using different chiral phosphine ligands.

View Article and Find Full Text PDF

This study reported a copper-catalyzed direct asymmetric aldol reaction between aldehydes and glycine Schiff bases with methyl, allyl, and -butyl esters. Additionally, this reaction afforded high yields of -β-hydroxy-α-amino esters with excellent enantio- and diastereoselectivities (93-99% ee, up to >99:1 dr). The aldol reaction accepted aromatic, linear aliphatic, and α-substituted aliphatic aldehydes.

View Article and Find Full Text PDF

An asymmetric Mannich-type addition of aldimines and haloacetonitriles is reported here, yielding halogenated aminonitriles with excellent stereoselectivity, facilitated by a pincer Ni(II) complex as a catalyst. Haloacetonitriles are recognized as reactive electrophiles, and the possibility of their use as a pronucleophile has been almost neglected for many years. The resulting adduct can be readily converted into various valuable derivatives, including chiral aziridines, starting from chlorinated compounds.

View Article and Find Full Text PDF

The first enantioselective copper-catalyzed conjugate addition of α-substituted benzyl nitriles to alkyl acrylates is described. This protocol allows the direct and 100% atom-economic generation of a nitrile-containing quaternary stereogenic center in a highly enantioselective manner. The practical application of our methodology was demonstrated through the concise formal synthesis of (-)-aphanorphine.

View Article and Find Full Text PDF

In this study, the reactivity of the alkyl nitrenes, generated from the substituted hydroxylamine precursors, was determined using the same rhodium catalyst. The results revealed that in competitive C-H insertion experiments, the regioselectivity between benzylic and tertiary C-H bonds could be modulated by adding Brønsted acids or changing the substituents on oxygen. This study enhances our understanding of the metallonitrene structures and provides valuable insights for further development of selective N-heterocycle syntheses.

View Article and Find Full Text PDF

A copper-catalyzed asymmetric vinylogous conjugate addition of butenolide to 2-ester-substituted chromones is described, and it delivers - or -chromanone lactones with high stereoselectivities. The enantioselectivity-determining step varied with the use of B(OMe) as an additive, resulting in enhanced stereoselectivities, as revealed by density functional theory calculations, which also provided theoretical insight into the origin of the ligand-dependent diastereodivergence.

View Article and Find Full Text PDF

The exponential proliferation of conformers makes it impossible to examine the entire population in most systems. Controlling conformational ensembles is thus pivotal in many areas of chemistry. Rh (esp) , a dicarboxylate-derived paddlewheel rhodium complex, is one of the most effective catalysts for nitrene chemistry.

View Article and Find Full Text PDF

Gonorrhea has become a serious problem because the number of infected people is increasing and the multi-drug resistance of the causative bacteria, Neisseria gonorrhoeae, is progressing. To develop novel drugs against resistant N. gonorrhoeae, we focused on the antibiotic novobiocin (1).

View Article and Find Full Text PDF

Novel aprosamine derivatives were synthesized for the development of aminoglycoside antibiotics active against multidrug-resistant Gram-negative bacteria. The synthesis of aprosamine derivatives involved glycosylation at the C-8' position and subsequent modification (epimerization and deoxygenation at the C-5 position and 1--acylation) of the 2-deoxystreptamine moiety. All 8'-β-glycosylated aprosamine derivatives (-) showed excellent antibacterial activity against carbapenem-resistant and 16S ribosomal RNA methyltransferase-producing multidrug-resistant Gram-negative bacteria compared to the clinical drug, arbekacin.

View Article and Find Full Text PDF

Diboron substructures have emerged as a promising scaffold for the catalytic dehydrative amidation of carboxylic acids and amines. This Letter describes the design, synthesis, and evaluation of the first isolable N(BOH) compound as an amidation catalyst. The new catalyst outperforms the previously reported BNO heterocycle catalyst, with respect to turnover frequency, albeit the former gradually decomposes upon exposure to amines.

View Article and Find Full Text PDF

A gram-scale -selective asymmetric vinylogous addition of butenolides to chromones, catalyzed by an Al-Li-BINOL (ALB) complex, was developed in this study. For various combinations of substrates, the observed diastereoselectivity approached 20:1 with 84-98% ee. This protocol is complementary to previously reported ones and improves the selectivity for several chromones.

View Article and Find Full Text PDF

Pyrrolidines are significant N-heterocycles in medicinal chemistry and are among the top ten ring systems found in drug molecules. While simple derivatives are commercially available, densely decorated derivatives with precise stereochemical arrangements remain difficult to obtain. Methods for synthesizing multisubstituted pyrrolidines with nonadjacent stereocenters are particularly scarce.

View Article and Find Full Text PDF
Article Synopsis
  • Selective modulation of autophagy could be a beneficial therapy for cancer, but the lack of specific inhibitors has been a challenge.
  • The ATG12-ATG5-ATG16L1 complex is crucial for the autophagy process, particularly in generating an important molecule called LC3-II.
  • The study reveals that a stapled peptide from ATG16L1 effectively inhibits autophagy by strongly binding to ATG5, showing resistance to degradation, and demonstrating significant effects in cells.
View Article and Find Full Text PDF

An iterative hydride reduction/oxidation process was promoted under ambient conditions by a quasi-planar iminium cation rigidified by two concatenated quinoline units. The iminium proton was fixed by hydrogen bonding from neighboring quinoline nitrogen atoms, rendering the imine highly susceptible to hydride reduction with weak reductants, e.g.

View Article and Find Full Text PDF

Despite recent advances in reactions using alkylnitriles as carbon nucleophiles, diastereoselective direct catalytic asymmetric reactions, in which two consecutive chiral centers could be controlled, remain largely unexplored. Herein, we report the addition of alkylnitriles (such as propionitrile) to imines in the presence of a catalytic amount of a chiral pincer-type Ni-carbene complex and potassium 2,6-di--butyl-4-methylphenoxide (KBHT). BHT and molecular sieves were used as additives to improve the yields, diastereoselectivity, and enantiomeric ratio up to >99%, 90:10 /, and 97.

View Article and Find Full Text PDF

Vicinal oxygen-containing tetra- and tri-substituted stereocenters exist widely in chromanone lactone and tetrahydroxanthone natural products. Their enantioselective construction in a single step remains elusive and poses a formidable challenge for chemical synthesis. Here, we report the first copper(I)-catalyzed asymmetric vinylogous additions of siloxyfurans to 2-ester-substituted chromones, which enable concise and enantioselective assembly of chromanone lactones.

View Article and Find Full Text PDF

Nonreducing disaccharide trehalose is used as a stabilizer and humectant in various products and is a potential medicinal drug, showing curative effects on the animal models of various diseases. However, its use is limited as it is hydrolyzed by trehalase, a widely expressed enzyme in multiple organisms. Several trehalose analogs are prepared, including a microbial metabolite 4-trehalosamine, and their high biological stability is confirmed.

View Article and Find Full Text PDF

In a screening using our unique natural product library, the C-nucleoside antibiotic formycin A, which exerts strong anti-influenza virus activity, was rediscovered. Aiming to develop a new type of anti-influenza virus drug, we synthesized new derivatives of formycin and evaluated its anti-influenza virus activity. Structural modifications were focused on the base moiety and sugar portion, respectively, and >40 novel formycin derivatives were synthesized.

View Article and Find Full Text PDF

The disruption of the tumor microenvironment (TME) is a promising anti-cancer strategy, but its effective targeting for solid tumors remains unknown. Here, we investigated the anti-cancer activity of the mitochondrial complex I inhibitor intervenolin (ITV), which modulates the TME independent of energy depletion. By modulating lactate metabolism, ITV induced the concomitant acidification of the intra- and extracellular environment, which synergistically suppressed S6K1 activity in cancer cells through protein phosphatase-2A-mediated dephosphorylation via G-protein-coupled receptor(s).

View Article and Find Full Text PDF

Catalytic asymmetric nitrene transfer has emerged as a reliable method for the synthesis of nitrogen-containing chiral compounds. Herein, we report the copper-catalyzed intramolecular asymmetric electrophilic amination of aromatic rings. The reactive intermediate is a copper-alkyl nitrene generated from isoxazolidin-5-ones.

View Article and Find Full Text PDF

The advent of saturated N-heterocycles as valuable building blocks in medicinal chemistry has led to the development of new methods to construct such nitrogen-containing cyclic frameworks. Despite the apparent strategic clarity, intramolecular C-H aminations with metallonitrenes have only sporadically been explored in this direction because of the intractability of the requisite alkyl nitrenes. Here, we report copper-catalysed intramolecular amination using an alkyl nitrene generated from substituted isoxazolidin-5-ones upon N-O bond cleavage.

View Article and Find Full Text PDF

An -selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed. The catalyst system developed herein is characterized by tuning of the steric and electronic effects using a proper Biphep-type chiral ligand to invert the diastereoselection, and improvement of the catalyst turnover by a coordinative phenolic additive. The catalytic protocol renders potentially biologically active natural product analogs accessible in good yield with moderate diastereoselectivity and high enantiomeric purity, mostly greater than 99% ee.

View Article and Find Full Text PDF

A direct catalytic asymmetric addition of acetonitrile to aldehydes that realizes over 90 % ee is the ultimate challenge in alkylnitrile addition chemistry. Herein, we report achieving high enantioselectivity by the strategic use of a sterically demanding Ni pincer carbene complex, which afforded highly enantioenriched β-hydroxynitriles. This highly atom-economical process paves the way for exploiting inexpensive acetonitrile as a promising C2 building block in a practical synthetic toolbox for asymmetric catalysis.

View Article and Find Full Text PDF

A fluorine-containing tetrasubstituted stereogenic center is a highly valued structural feature in medicinal chemistry. Herein, we describe the direct coupling of racemic α-fluoronitriles and aldehydes promoted by a chiral Cu /Barton's base catalytic system, delivering α-tetrasubstituted α-fluoro-β-hydroxynitriles with satisfactory stereoselection. The stereochemical course was positively biased by the combined use of asymmetrical achiral thiourea as a supplementary ligand for Cu , which significantly enhanced the stereoselectivity.

View Article and Find Full Text PDF

This review describes our efforts toward achieving catalytic asymmetric total synthesis of leucinostatin A, a compound that interferes with the tumor-stroma interaction. The synthesis utilizes four catalytic asymmetric reactions, including direct-type reactions exemplified by high atom-economy, and three C-C bond forming reactions. Thorough analysis of the NMR data, HPLC profiles, and biologic activity led us to unambiguously revise the absolute configuration regarding the 6-position of the AHMOD residue side chain from S (reported) to R.

View Article and Find Full Text PDF