The current electrophysiological study investigated the functional roles of high- and low-voltage-activated Ca channel subtypes on glutamatergic small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons. Experiments combining both the "synapse bouton" preparation and single-pulse focal stimulation technique were performed using the conventional whole cell patch configuration under voltage-clamp conditions. Nifedipine, at a high concentration, and BAY K 8644 inhibited and facilitated the glutamatergic excitatory postsynaptic currents (eEPSCs) that were evoked by 0.
View Article and Find Full Text PDF4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an alternative to organotin antifoulants, such as tributyltin and triphenyltin. Since DCOIT is found in harbors, bays, and coastal areas worldwide, this chemical compound may have some impacts on ecosystems. To determine whether DCOIT possesses neurotoxic activity by modifying synaptic transmission, we examined the effects of DCOIT on synaptic transmission in a 'synaptic bouton' preparation of rat brain.
View Article and Find Full Text PDFThe effects of the intravenous anesthetic, propofol, on glycinergic transmission and on glycine receptor-mediated whole-cell currents (IGly) were examined in the substantia gelatinosa (SG) neuronal cell body, mechanically dissociated from the rat spinal cord. This "synaptic bouton" preparation, which retains functional native nerve endings, allowed us to evaluate glycinergic inhibitory postsynaptic currents (IPSCs) and whole-cell currents in a preparation in which experimental solution could rapidly access synaptic terminals. Synaptic IPSCs were measured as spontaneous (s) and evoked (e) IPSCs.
View Article and Find Full Text PDFWe evaluated the effects of N2O on synaptic transmission using a preparation of mechanically dissociated rat hippocampal CA3 neurons that allowed assays of single bouton responses evoked from native functional nerve endings. We studied the effects of N2O on GABAA, glutamate, AMPA and NMDA receptor-mediated currents (IGABA, IGlu, IAMPA and INMDA) elicited by exogenous application of GABA, glutamate, (S)-AMPA, and NMDA and spontaneous, miniature, and evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic current (sIPSC, mIPSC, eIPSC, sEPSC, mEPSC and eEPSC) in mechanically dissociated CA3 neurons. eIPSC and eEPSC were evoked by focal electrical stimulation of a single bouton.
View Article and Find Full Text PDFThe acute effects of high-dose Li(+) treatment on glutamatergic and GABAergic transmissions were studied in the "synaptic bouton" preparation of isolated rat hippocampal pyramidal neurons by using focal electrical stimulation. Both action potential-dependent glutamatergic excitatory and GABAergic inhibitory postsynaptic currents (eEPSC and eIPSC, respectively) were dose-dependently inhibited in the external media containing 30-150 mM Li(+), but the sensitivity for Li(+) was greater tendency for eEPSCs than for eIPSCs. When the effects of Li(+) on glutamate or GABAA receptor-mediated whole-cell responses (IGlu and IGABA) elicited by an exogenous application of glutamate or GABA were examined in the postsynaptic soma membrane of CA3 neurons, Li(+) slightly inhibited both IGlu and IGABA at the 150 mM Li(+) concentration.
View Article and Find Full Text PDFThe effects of heavy water (deuterium oxide, D2O) on GABAergic and glutamatergic spontaneous and evoked synaptic transmission were investigated in acute brain slice and isolated "synaptic bouton" preparations of rat hippocampal CA3 neurons. The substitution of D2O for H2O reduced the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner but had no effect on glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, for evoked synaptic responses in isolated neurons, the amplitude of both inhibitory and excitatory postsynaptic currents (eIPSCs and eEPSCs) was decreased in a concentration-dependent manner.
View Article and Find Full Text PDFThe present study utilised a 'synaptic bouton' preparation of mechanically isolated rat hippocampal CA3 pyramidal neurons, which permits direct physiological and pharmacological quantitative analyses at the excitatory and inhibitory single synapse level. Evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs) were generated by focal paired-pulse electrical stimulation of single boutons. The sensitivity of eEPSC to tetrodotoxin (TTX) was higher than that of the voltage-dependent Na(+) channel whole-cell current (INa) in the postsynaptic CA3 soma membrane.
View Article and Find Full Text PDFTriphenyltin (TPT) is an organometallic compound that poses a known environmental hazard to some fish and mollusks, as well as mammals. However, its neurotoxic mechanisms in the mammalian brain are still unclear. Thus, we have investigated mechanisms through which TPT modulates glutamatergic synaptic transmission, including spontaneous, miniature, and evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, and eEPSCs respectively), in a rat hippocampal CA3 'synaptic-bouton' preparation.
View Article and Find Full Text PDFGen Physiol Biophys
August 2014
Human plasma contains wide variety of bioactive proteins that have proved essential in therapeutic discovery. However many human plasma proteins remain orphans with unknown biological functions. Evidences suggest that some plasma components target the respiratory system.
View Article and Find Full Text PDFLevetiracetam (LEV) is an antiepileptic drug with a unique but as yet not fully resolved mechanism of action. Therefore, by use of a simplified rat-isolated nerve-bouton preparation, we have investigated how LEV modulates glutamatergic transmission from mossy fiber terminals to hippocampal CA3 neurons. Action potential-evoked excitatory postsynaptic currents (eEPSCs) were recorded using a conventional whole-cell patch-clamp recording configuration in voltage-clamp mode.
View Article and Find Full Text PDFAtrial and brain natriuretic peptides (ANP and BNP) exist in the central nervous system and modulate neuronal function, although the locus of actions and physiological mechanisms are still unclear. In the present study we used rat spinal sacral dorsal commissural nucleus (SDCN) and hippocampal 'synaptic bouton' preparations, to record both spontaneous and evoked glycinergic inhibitory postsynaptic currents (sIPSCs and eIPSCs) in SDCN neurons, and the evoked excitatory postsynaptic currents (eEPSCs) in hippocampal CA3 neurons. ANP potently and significantly reduced the sIPSC frequency without affecting the amplitude.
View Article and Find Full Text PDFWe evaluated the effects of propofol on synaptic transmission using a mechanically dissociated preparation of rat hippocampal CA3 neurons to allow assays of single bouton responses evoked from retained functional native nerve endings. We studied synaptic and extrasynaptic GABAA and glutamate receptor responses in a preparation in which experimental solutions rapidly accessed synaptic terminals. Whole-cell responses were evoked by bath application of GABA and glutamate.
View Article and Find Full Text PDFThe amounts of puffer toxin (tetrodotoxin, TTX) extracted from the fresh and the traditional Japanese salted and fermented "Nukazuke" and "Kasuzuke" ovaries of Takifugu stictonotus (T. stictonotus) were quantitatively analyzed in the voltage-dependent sodium current (I(Na)) recorded from mechanically dissociated single rat hippocampal CA1 neurons. The amount of TTX contained in "Nukazuke" and "Kasuzuke" ovaries decreased to 1/50-1/90 times of that of fresh ovary during a salted and successive fermented period over a few years.
View Article and Find Full Text PDFNeurosteroids such as allopregnanolone (Allo) are widely distributed in the brain and may modulate neuronal excitability under physiological or pathological states. Allo modulates GABAA receptor responses, and in this study we investigated the functional effects of Allo on presynaptic GABAA receptors on single glutamatergic nerve terminal projecting on CA3 neurons. In the present study, we measured spontaneous and evoked excitatory postsynaptic currents (sEPSCs and eEPSCs), the latter was elicited with single or paired-pulse focal electrical stimulation, using mechanically isolated 'synaptic bouton' preparation.
View Article and Find Full Text PDFType A botulinum toxin blocks not only ACh release from motor nerve terminals but also central synaptic transmission, including glutamate, noradrenaline, dopamine, ATP, GABA and glycine. Neurotoxins (NTXs) are transported by both antero- and retrogradely along either motor or sensory axons for bidirectional delivery between peripheral tissues or the CNS. A newly developed type A2 NTX (A2NTX) injected into one rat foreleg muscle was transported to the contralateral muscle.
View Article and Find Full Text PDFPentobarbital (PB) modulates GABA(A) receptor-mediated postsynaptic responses through various mechanisms, and can directly activate the channel at higher doses. These channels exist both pre- and postsynaptically, and on the soma outside the synapse. PB also inhibits voltage-dependent Na⁺ and Ca²⁺ channels to decrease excitatory synaptic transmission.
View Article and Find Full Text PDFBackground: 5-hydroxytryptamine (5-HT) is one of the major neurotransmitters widely distributed in the CNS. Several 5-HT receptor subtypes have been identified in the spinal dorsal horn which act on both pre- and postsynaptic sites of excitatory and inhibitory neurons. However, the receptor subtypes and sites of actions as well as underlying mechanism are not clarified rigorously.
View Article and Find Full Text PDFEthanol (EtOH) has a number of behavioral effects, including intoxication, amnesia, and/or sedation, that are thought to relate to the activation of GABA(A) receptors. However, GABA(A) receptors at different cellular locations have different sensitivities to EtOH. The present study used the "synaptic bouton" preparation where we could stimulate nerve endings on mechanically dissociated single rat hippocampal CA1 and CA3 pyramidal neurons and investigate the effects of EtOH on presynaptic and postsynaptic GABA(A) receptors.
View Article and Find Full Text PDFWe observed the effects of tetanus toxin (TeNT) on spontaneous miniature and evoked postsynaptic currents at inhibitory (glycinergic) and excitatory (glutamatergic) synapses in SDCN of rat spinal cord, by use of 'synaptic bouton' preparations, under voltage clamp condition. TeNT (>10 pM) dose-dependently decreased the frequency without affecting amplitude of glycinergic spontaneous miniature IPSCs. However, TeNT (100 pM) had no effect on frequency or amplitude of glutamatergic spontaneous EPSCs.
View Article and Find Full Text PDFOur recent study showed a possibility that newly developed A2 type botulinum toxin (A2NTX) inhibits both spontaneous and evoked transmitter release from inhibitory (glycinergic or GABAergic) and excitatory (glutamatergic) nerve terminals using rat spinal sacral dorsal commissural nucleus neurons. In the present study, to determine the modulatory effect of A2NTX on glycinergic and glutamatergic release probabilities, we tested the effects of A2NTX on a single inhibitory or excitatory nerve ending adherent to a dissociated neuron that was activated by paired-pulse stimuli by using the focal electrical stimulation technique. The results of the present paired-pulse experiments showed clearly that A2NTX enhanced paired-pulse facilitation of evoked glycinergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents and increased the failure rate (Rf) of the first postsynaptic currents (P) and both the responses.
View Article and Find Full Text PDFRecent studies have demonstrated that the botulinum neurotoxins inhibit the release of acetylcholine, glutamate, GABA, and glycine in central nerve system (CNS) neurons. The Na current (I) is of major interest because it acts as the trigger for many cellular functions such as transmission, secretion, contraction, and sensation. Thus, these observations raise the possibility that A type neurotoxin might also alter the I of neuronal excitable membrane.
View Article and Find Full Text PDFOur recent study showed a possibility that newly developed A2 type botulinum toxin (A2NTX) inhibits both spontaneous and evoked transmitter release from inhibitory (glycinergic or GABAergic) and excitatory (glutamatergic) nerve terminals using rat spinal sacral dorsal commissural nucleus neurons. In the present study, to determine the modulatory effect of A2NTX on glycinergic and glutamatergic release probabilities, we tested the effects of A2NTX on a single inhibitory or excitatory nerve ending adherent to a dissociated neuron that was activated by paired-pulse stimuli by using the focal electrical stimulation technique. The results of the present paired-pulse experiments showed clearly that A2NTX enhanced paired-pulse facilitation of evoked glycinergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents and increased the failure rate (Rf) of the first postsynaptic currents (P(1)) and both the responses.
View Article and Find Full Text PDFRecent studies have demonstrated that the botulinum neurotoxins inhibit the release of acetylcholine, glutamate, GABA, and glycine in central nerve system (CNS) neurons. The Na(+) current (I(Na)) is of major interest because it acts as the trigger for many cellular functions such as transmission, secretion, contraction, and sensation. Thus, these observations raise the possibility that A type neurotoxin might also alter the I(Na) of neuronal excitable membrane.
View Article and Find Full Text PDFWe investigated the functional roles of diazepam (DZP) at presynaptic GABA(A) receptors on glutamatergic nerve terminals in contributing to glutamatergic transmission evoked by single and/or paired-pulse focal electrical stimulation. In mechanically dissociated rat hippocampal CA3 neurons with adherent glutamatergic nerve terminals (boutons), namely 'synaptic bouton' preparation, action potential-evoked excitatory postsynaptic currents (eEPSCs) were recorded using conventional whole-cell patch configuration under voltage-clamp condition. Selective activation of presynaptic GABA(A) receptors by muscimol (3-30μM) induced presynaptic inhibition: i.
View Article and Find Full Text PDFThe effects of α-chloralose on presynaptic GABA(A) receptors were investigated with respect to spontaneous and evoked GABAergic transmission (sIPSCs and eIPSCs) in rat hippocampal CA1 pyramidal neurons. sIPSCs were recorded in mechanically dissociated CA1 neurons with intact GABAergic terminals, namely the "synaptic bouton preparation." eIPSCs were elicited by focal electrical stimuli of a single GABAergic bouton on an isolated CA1 neuron using the whole-cell patch recording configurations under voltage-clamp condition.
View Article and Find Full Text PDF