Indoxyl sulfate (IS), a uremic toxin, is a physiologically active sulfated metabolite, specifically in kidney failure patients. Our previous studies have shown that IS downregulates phagocytic immune function in a differentiated HL-60 human macrophage cell model. However, it remains unclear whether IS exerts similar effects on macrophage function in other cell types or in lipopolysaccharide (LPS)-sensitive immune cell models.
View Article and Find Full Text PDFCytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the -sulfonation of hydroxy groups or -sulfonation of amino groups of substrate compounds. In this study, we report the discovery of -sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2024
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules.
View Article and Find Full Text PDFAcetaminophen (APAP) and p-aminophenol (p-AP) are the analogous simple phenolic compounds that undergo sulfate conjugation (sulfation) by cytosolic sulfotransferases. Sulfation is generally thought to lead to the inactivation and disposal of endogenous as well as xenobiotic compounds. This study aimed to investigate the antioxidative effects of O-sulfated form of APAP and p-AP, i.
View Article and Find Full Text PDFNevirapine (NVP) is an effective drug for the treatment of HIV infections, but its use is limited by a high incidence of severe skin rash and liver injury. 12-Hydroxynevirapine (12-OH-NVP) is the major metabolite of nevirapine. There is strong evidence that the sulfate of 12-OH-NVP is responsible for the skin rash.
View Article and Find Full Text PDFPolyphenols in plants are important for defense responses against microorganisms, insect herbivory, and control of feeding. Owing to their antioxidant, anti-cancer, and anti-inflammatory activities, their importance in human nutrition has been acknowledged. However, metabolism of polyphenols derived from mulberry leaves in silkworms (Bombyx mori) remains unclear.
View Article and Find Full Text PDFCytosolic sulfotransferase SULT1C subfamily is one of the most flexible gene subfamilies during mammalian evolution. The physiological functions of SULT1C enzymes still remain to be fully understood. In this study, common marmoset (Callithrix jacchus), a promising primate animal model, was used to investigate the functional relevance of the SULT1C subfamily.
View Article and Find Full Text PDFAn outer membrane -type cytochrome (OmcZ) in Geobacter sulfurreducens is essential for optimal current production in microbial fuel cells. OmcZ exists in two forms, small and large, designated OmcZ and OmcZ, respectively. However, it is still not known how these two structures are formed.
View Article and Find Full Text PDFIndoxyl, a derivative of indole originating from tryptophan, may undergo phase-II sulfate-conjugation pathway, thereby forming indoxyl sulfate (IS) in vivo. We previously reported that IS, a well-known uremic toxin, can increase the intracellular oxidation level and decrease the phagocytic activity in a differentiated HL-60 human macrophage cell model. Using the same cell model, the current study aimed to investigate whether indole and indoxyl (the metabolic precursors of indoxyl and IS, respectively) may cause macrophage immune dysfunction.
View Article and Find Full Text PDFIndoxyl sulfate (IS), a uremic toxin, is a sulfate-conjugated metabolite originated from tryptophan. Accumulating uremic toxins may worsen renal diseases and further complicate related disorders including impaired immune functions under oxidative stress conditions. However, it has remained unclear whether or not IS can directly cause the cellular immune dysfunction.
View Article and Find Full Text PDFPregnenolone and dehydroepiandrosterone (DHEA) are hydroxysteroids that serve as biosynthetic precursors for steroid hormones in human body. SULT2B1b has been reported to be critically involved in the sulfation of pregnenolone and DHEA, particularly in the sex steroid-responsive tissues. The current study was designed to investigate the impact of the genetic polymorphisms of SULT2B1 on the sulfation of DHEA and pregnenolone by SULT2B1b allozymes.
View Article and Find Full Text PDFSteroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme.
View Article and Find Full Text PDFSulphated cholesterol, like its unsulphated counterpart, is known to be biologically active and serves a myriad of biochemical/physiological functions. Of the 13 human cytosolic sulphotransferases (SULTs), SULT2B1b has been reported as the main enzyme responsible for the sulphation of cholesterol. As such, SULT2B1b may play the role as a key regulator of cholesterol metabolism.
View Article and Find Full Text PDFMembers of the cytosolic sulfotransferase (SULT) SULT2A subfamily are known to be critically involved in the homeostasis of steroids and bile acids. SULT2A8, a 7α-hydroxyl bile acid-preferring mouse SULT, has been identified as the major enzyme responsible for the mouse-specific 7-O-sulfation of bile acids. Interestingly, SULT2A8 lacks a conservative catalytic His residue at position 99th.
View Article and Find Full Text PDFThe cytosolic sulfotransferase (SULT) SULT2A1 is known to mediate the sulfation of DHEA as well as some other hydroxysteroids such as pregnenolone. The present study was designed to investigate how genetic polymorphisms of the human SULT2A1 gene may affect the sulfation of DHEA and pregnenolone. Online databases were systematically searched to identify human SULT2A1 single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDF1-Naphthol (1-Nap) and 2-naphthol (2-Nap) are phenolic isomers that may be subjected to sulfate conjugation in vivo. Phase-II sulfate conjugation of phenolic compounds is generally thought to result in their inactivation. This study aimed to investigate the antioxidative effects of 1-NapS and 2-NapS, in comparison with their unsulfated counterparts, using established free radical scavenging assays.
View Article and Find Full Text PDFPrevious studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
August 2018
Background And Objectives: Previous studies have demonstrated the metabolism of tibolone through sulfation, with the cytosolic sulfotransferase (SULT) SULT2A1 as the major responsible enzyme. The current study aimed to investigate how SULT2A1 genetic polymorphisms may affect the dehydroepiandrosterone (DHEA)- and tibolone-sulfating activity of SULT2A1.
Methods: Site-directed mutagenesis was employed to generate cDNAs encoding ten different SULT2A1 allozymes.
The cytosolic sulphotransferase SULT1C3 remained the most poorly understood human SULT. The SULT1C3 gene has been shown to contain alternative exons 7 and 8, raising the question concerning their evolutionary origin and implying the generation of multiple SULT1C3 variants. Two SULT1C3 splice variants, SULT1C3a and SULT1C3d, were investigated to verify the impact of alternative C-terminal sequences on their sulphating activity.
View Article and Find Full Text PDFTyrosylprotein sulfotransferases (TPSTs) are enzymes that catalyze post-translational tyrosine sulfation of proteins. In humans, there are only two TPST isoforms, designated TPST1 and TPST2. In a previous study, we reported the crystal structure of TPST2, which revealed the catalytic mechanism of the tyrosine sulfation reaction.
View Article and Find Full Text PDF5α-Cyprinol 27-sulfate is the major biliary bile salt present in cypriniform fish including the zebrafish (Danio rerio). The current study was designed to identify the zebrafish cytosolic sulfotransferase (Sult) enzyme(s) capable of sulfating 5α-cyprinol and to characterize the zebrafish 5α-cyprinol-sulfating Sults in comparison with human SULT2A1. Enzymatic assays using zebrafish homogenates showed 5α-cyprinol-sulfating activity.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2017
Cytosolic sulfotransferase (SULT)-mediated sulfation is generally known to involve the transfer of a sulfonate group from the active sulfate, 3'-phosphoadenosine 5'-phosphosulfate (PAPS), to a hydroxyl group or an amino group of a substrate compound. We report here that human SULT2A1, in addition to being able to sulfate dehydroepiandrosterone (DHEA) and other hydroxysteroids, could also catalyze the sulfation of Δ-3-ketosteroids, which carry no hydroxyl groups in their chemical structure. Among a panel of Δ-3-ketosteroids tested as substrates, 4-androstene-3,17-dione and progesterone were found to be sulfated by SULT2A1.
View Article and Find Full Text PDFWhile 25-hydroxyvitamin D 3-O-sulfate is known to be present in circulation, how it is generated in the body remains unclear. This study aimed to investigate its sulfation in major human organs and to unveil the responsible cytosolic sulfotransferases (SULTs). Of the vitamin D -related compounds tested, 25-hydroxyvitamin D and 7-dehydrocholesterol are preferentially sulfated by human organ cytosols.
View Article and Find Full Text PDFZebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S-transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi-1 (GSTP1).
View Article and Find Full Text PDFDietary polyphenols present in fruits and vegetables have been reported to manifest beneficial health effects on humans. Polyphenol metabolites including their sulfated derivatives have been shown to be biologically active. Primarily due to the difficulty in preparing regiospecific sulfated polyphenols for detailed investigations, the exact functions of sulfated polyphenols, however, remain unclear.
View Article and Find Full Text PDF