C-Phycocyanin (PC) is a protein used commercially as a natural blue pigment produced by cyanobacteria, cryptophytes, and rhodophytes. Although it is industrially synthesized from the cyanobacterium Arthrospira platensis, PC requires high levels of energy for its extraction, which involves freezing of cells. However, as a protein, PC is easily denatured at extreme temperatures.
View Article and Find Full Text PDFThe tricarboxylic acid cycle produces NADH for oxidative phosphorylation and fumarase [EC 4.2.1.
View Article and Find Full Text PDFCyanobacteria possess an atypical tricarboxylic acid (TCA) cycle with various bypasses. Previous studies have suggested that a cyclic flow through the TCA cycle is not essential for cyanobacteria under normal growth conditions. The cyanobacterial TCA cycle is, thus, different from that in other bacteria, and the biochemical properties of enzymes in this TCA cycle are less understood.
View Article and Find Full Text PDFLactate/lactic acid is an important chemical compound for the manufacturing of bioplastics. The unicellular cyanobacterium Synechocystis sp. PCC 6803 can produce lactate from carbon dioxide and possesses D-lactate dehydrogenase (Ddh).
View Article and Find Full Text PDFWe quantified the transcript levels of 44 genes related to sugar catabolism in strains with altered primary carbon metabolism and discovered a consistent expression pattern among succinate-producing mutants. To identify factors that determine the expression pattern, we calculated Pearson's correlation coefficients, using the transcript data. Correlation analysis revealed positive and negative correlations among genes encoding sugar catabolic enzymes.
View Article and Find Full Text PDFPhosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO fixation and primary metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified.
View Article and Find Full Text PDFCyanobacteria perform oxygenic photosynthesis, and the maintenance of photosynthetic electron transport chains is indispensable to their survival in various environmental conditions. Photosynthetic electron transport in cyanobacteria can be studied through genetic analysis because of the natural competence of cyanobacteria. We here show that a strain overexpressing hik8, a histidine kinase gene related to the circadian clock, exhibits an altered photosynthetic electron transport chain in the unicellular cyanobacterium Synechocystis sp.
View Article and Find Full Text PDF