A colorimetric method for the glucosamine (GlcN) assay was applied for the determination of chitin, which can be hydrolyzed to produce GlcN. A 10-mg sample was mixed with 10 mL of a 5 mol/L HCl aqueous solution, and the mixture was kept at 100°C for 12 h. Under these conditions, chitin was completely depolymerized and deacetylated to produce GlcN, even when the sample was a crab shell.
View Article and Find Full Text PDFNonribosomal peptide synthetases (NRPSs) are multifunctional enzymes consisting of catalytic domains. The substrate specificities of adenylation (A) domains determine the amino-acid building blocks to be incorporated during nonribosomal peptide biosynthesis. The A-domains mediate ATP-dependent activation of amino-acid substrates as aminoacyl-O-AMP with pyrophosphate (PPi) release.
View Article and Find Full Text PDFA colorimetric method for monosaccharide determination (Anal. Sci., 2013, 29, 1021) was optimized for the high-throughput screening of α-glucosidase, which hydrolyzes an α-1,4-glycosidic bond of starch and related oligo- and polysaccharides, followed by the release of D-glucose from the non-reducing ends.
View Article and Find Full Text PDFA colorimetric method for the reducing monosaccharide determination is optimized for the assay of glucose isomerase, which converts glucose (Glc) to fructose (Fru). Test solution was mixed with 20-fold volume of the 50 mM Na2SiO3, 600 mM Na2MoO4, and 0.95 M HCl aqueous solution (pH 4.
View Article and Find Full Text PDFA simple method to separate soyasaponin Bb from a soy extract is presented. This method is based on the difference in the solubility of soyasaponin Bb and Ba and other components into 3:7 and 1:1 (v/v) acetone-water mixed solvents. The crude soyasaponin consisting of soyasaponins Aa, Ab, Ba, and Bb at the 10 wt% level and other components was examined as the soy extract.
View Article and Find Full Text PDFA colorimetric pyrophosphate assay based on the formation and reduction of the 18-molybdopyrophosphate ([(P2O7)Mo18O54](4-)) anion in an acetonitrile-water mixed solvent was modified and improved. The [(P2O7)Mo18O54](4-) anion is precipitated from the acetonitrile-water solution containing MoO4(2-) and HCl, and is re-dissolved in neat acetonitrile or propylene carbonate. This separation process decreases the interference by ATP, and prevents a yellow coloration of the reducing agent, ascorbic acid, due to excess Mo(VI) species.
View Article and Find Full Text PDF