It is important to understand the mechanism of colloidal particle assembly near a substrate for development of drug delivery systems, micro-/nanorobots, batteries, heterogeneous catalysts, paints, and cosmetics. Understanding the mechanism is also important for crystallization of the colloidal particles and proteins. In this study, we calculated the physical adsorption of colloidal particles on a flat wall mainly using the integral equation theory, wherein small and large colloidal particles were employed.
View Article and Find Full Text PDFBackground: The efficiency of cellulolytic enzymes is important in industrial biorefinery processes, including biofuel production. Chemical methods, such as alkali pretreatment, have been extensively studied and demonstrated as effective for breaking recalcitrant lignocellulose structures. However, these methods have a detrimental effect on the environment.
View Article and Find Full Text PDFThis paper shows a systematic study of the 500 kHz frequency ultrasound efficiency on the microbial inactivation as a function of ultrasonic power delivered into the bacterial suspension. The inactivation of Escherichia coli IAM 12058, a Gram-negative bacterium and Streptococcus mutans JCM 5175, a Gram-positive bacterium is enhanced by increasing the ultrasonic power in the range of 1.7-12.
View Article and Find Full Text PDF