A commercially available flat bolus (commercial bolus) would not fully fit the irregular surfaces of the scalp. We developed a transparent and flexible material with good fitting properties, analyzed its physical characteristics, and evaluated the clinical feasibility of the bolus fabricated using a three-dimensional (3D) printer (3D bolus). To evaluate the physical characteristics of the new material, treatment plans with virtual, 3D, and commercial boluses were created for water-equivalent phantoms using a radiation treatment planning system (RTPS).
View Article and Find Full Text PDFIn this study, we propose a novel wedged field using a half-field flattening filter-free beam without a metallic filter or a moving jaw, and investigate the characteristics of the proposed technique. Dose distributions of the proposed method were first determined in virtual-water or anthropomorphic phantom using a radiotherapy planning system. We evaluated the wedge angle as a function of the field size, collimator rotation, and depth.
View Article and Find Full Text PDFPurpose: Radiation therapy for cancer may be required for patients with implantable cardiac devices. However, the influence of secondary neutrons or scattered irradiation from high-energy photons (≥10 MV) on implantable cardioverter-defibrillators (ICDs) is unclear. This study was performed to examine this issue in 2 ICD models.
View Article and Find Full Text PDF