Publications by authors named "Masahiro Fujiwara"

Purpose: Systems equipped with natural language (NLP) processing can reduce missed radiological findings by physicians, but the annotation costs are burden in the development. This study aimed to compare the effects of active learning (AL) algorithms in NLP for estimating the significance of head computed tomography (CT) reports using bidirectional encoder representations from transformers (BERT).

Methods: A total of 3728 head CT reports annotated with five categories of importance were used and UTH-BERT was adopted as the pre-trained BERT model.

View Article and Find Full Text PDF

Government policies in the United States and the European Union promote standardization and value creation in the use of FAIR (findability, accessibility, interoperability, and reusability) data, which can enhance trust in digital health systems and is crucial for their success. Trust is built through elements such as FAIR data access, interoperability, and improved communication, which are essential for fostering innovation in digital health technologies. This Viewpoint aims to report on exploratory research demonstrating the feasibility of testing a patient-centric data flow model facilitating semantic interoperability on precision medical information.

View Article and Find Full Text PDF

In spatiotemporal modulation (STM) and lateral modulation (LM) used in conventional mid-air ultrasound tactile stimulation, single or multiple focuses are moved by switching the ultrasound transducer phases. A problem with the phase switching method is the limitation of the focus motion speed due to rapid phase switching that causes sound pressure fluctuations. This paper proposes an LM method using multiple-frequency ultrasound to shift the ultrasound focal point without switching the phase.

View Article and Find Full Text PDF
Article Synopsis
  • A five-point scale for evaluating the importance of radiology reports, termed Report Importance Category (RIC), was proposed and tested using Japanese head CT reports.
  • A total of 3,728 head CT reports were manually assessed for RIC by neuroradiologists, with four NLP models (including domain-specific BERT) compared for their accuracy in classification.
  • Domain-specific BERT outperformed other models in assessing RIC, achieving the highest accuracy and providing insights into critical terms in the reports, indicating its potential to improve medical safety by reducing missed findings.
View Article and Find Full Text PDF

A lightweight haptic display that does not interfere with the user's natural movement is required for an immersive haptic experience. This study proposes a lightweight, powerful, and responsive passive haptic actuator driven by airborne focused ultrasound. This 6.

View Article and Find Full Text PDF

A noncontact tactile stimulus can be presented by focusing airborne ultrasound on the human skin. Focused ultrasound has recently been reported to produce not only vibration but also static pressure sensation on the palm by modulating the sound pressure distribution at a low frequency. This finding expands the potential for tactile rendering in ultrasound haptics as static pressure sensation is perceived with a high spatial resolution.

View Article and Find Full Text PDF

Airborne ultrasound tactile display (AUTD) is used to provide non-contact tactile sensations with specific foci sound fields through the optimization of transducer phases. However, most existing optimization approaches are not directly applicable in case of an inhomogeneous medium, such as in the presence of obstacles between the AUTD and objective sound field. Certain methods can perform optimizations by considering the sound-scattering surfaces of the obstacles to compute the transmission matrix, which requires several complex measurements.

View Article and Find Full Text PDF

In vibrotactile stimuli, it is essential to reproduce realistic tactile sensations to enhance the immersiveness of applications. To reproduce more realistic tactile experiences, various tools have been proposed to fine-tune and design vibrotactile sensations. Considering the situation where users adjust parameters manually, providing tactile sensations with fewer parameters is desirable.

View Article and Find Full Text PDF

Objective: To evaluate the diagnostic equivalency between an ultrafast (1 min 53 s) lumbar MRI protocol using deep learning-based reconstruction and a conventional lumbar MRI protocol (12 min 31 s).

Materials And Methods: This study included 58 patients who underwent lumbar MRI using both conventional and ultrafast protocols, including sagittal T1-weighted, T2-weighted, short-TI inversion recovery, and axial T2-weighted sequences. Compared with the conventional protocol, the ultrafast protocol shortened the acquisition time to approximately one-sixth.

View Article and Find Full Text PDF

Purpose: A major drawback of magnetic resonance imaging (MRI) is its limited imaging speed. This study proposed an ultrafast cervical spine MRI protocol (2 min 57 s) using deep learning-based reconstruction (DLR) and compared the diagnostic results to those of conventional MRI protocols (12 min 54 s).

Methods: Fifty patients who underwent cervical spine MRI using both conventional and ultrafast protocols, including sagittal T1-weighted, T2-weighted, short-TI inversion recovery, and axial T2*-weighted imaging were included in this study.

View Article and Find Full Text PDF

In recent years, various tactile displays having the ability to change their surface friction have been proposed. These displays can express many types of textures and shapes that the materials used for them do not possess. In our study, we found that the ultrasound converged on the surface of polystyrene foam reduces the surface friction.

View Article and Find Full Text PDF

Background: Recognition of the anatomical course of the chorda tympani nerve (CTN) is important for preventing iatrogenic injuries during middle-ear surgery.

Purpose: This study aims to compare visualization of the CTN using two computed tomography (CT) methods: conventional high-resolution CT (C-HRCT) and ultra-high-resolution CT (U-HRCT).

Materials And Methods: We performed a retrospective visual assessment of 59 CTNs in normal temporal bones of 54 consecutive patients who underwent both C-HRCT and U-HRCT.

View Article and Find Full Text PDF

Focused airborne ultrasound provides various noncontact spatiotemporal pressure patterns on the skin. However, the presentation of static force remains an untouched issue because the static radiation force by ultrasound is too weak for the human hand to perceive. Hence, creatable sensations have been limited to vibrations or some dynamically changing feelings.

View Article and Find Full Text PDF

Background: Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites and at different field strengths.

Purpose: To validate the denoising performance of deep learning-based reconstruction method trained by brain and knee 3T magnetic resonance images when applied to lumbar 1.

View Article and Find Full Text PDF

Non-contact tactile presentation using ultrasound phased arrays is becoming a powerful method for providing haptic feedback on bare skin without restricting the user's movement. In such ultrasonic mid-air haptics, it is often necessary to generate multiple ultrasonic foci simultaneously, which requires solving the inverse problem of amplitudes and phases of the transducers in a phased array. Conventionally, matrix calculation methods have been used to solve this inverse problem.

View Article and Find Full Text PDF

We propose a film device that can be attached to flat surfaces, including touch panels, to remotely reduce surface friction by irradiating airborne ultrasound. In this article, we present a film-air resonance structure that produces large-amplitude surface vibrations excited by airborne ultrasound. We confirmed via simulation that the surface amplitude increases to a level sufficient to reduce friction at the designed frequency.

View Article and Find Full Text PDF

Through nonlinear effects, airborne ultrasound phased arrays enable mid-air tactile presentations, as well as auditory presentation and acoustic levitation. To create workplaces flexibly, we have developed a scalable phased array system in which multiple modules can be connected via Ethernet cables and controlled from a PC or other host device. Each module has 249 transducers and the software used can individually specify the phase and amplitude of each of the connected transducers.

View Article and Find Full Text PDF

Purpose: To elucidate the effect of deep learning-based computer-assisted detection (CAD) on the performance of different-level physicians in detecting intracranial haemorrhage using CT.

Methods: A total of 40 head CT datasets (normal, 16; haemorrhagic, 24) were evaluated by 15 physicians (5 board-certificated radiologists, 5 radiology residents, and 5 medical interns). The physicians attended 2 reading sessions without and with CAD.

View Article and Find Full Text PDF

Background And Purpose: To report 9 new cases of non-cavernous sinus dural arteriovenous fistulas (NCS-DAVFs) that closed spontaneously and systematically review reports of other cases in the literature.

Material And Methods: We performed a retrospective analysis of 9 cases from 2 institutions of NCS-DAVFs that closed spontaneously. Using PubMed and Scopus in accordance with the PRISMA guidelines, we systematically reviewed English language articles about NCS-DAVFs showing spontaneous closure.

View Article and Find Full Text PDF

Ultrasound emitted from an array of transducers can produce various tactile sensations by temporally controlling the phase and amplitude of the transducers. However, the controllability in haptic applications has not been well examined. This article clarifies a phase shift of the driving signal causes amplitude fluctuation of emitted ultrasound, even under a constant driving amplitude.

View Article and Find Full Text PDF

Purpose: To compare the effectiveness of silent susceptibility-weighted angiography (sSWAN), a new imaging technique with lower acoustic noise, with conventional susceptibility-weighted angiography (cSWAN) in the detection of intracranial hemorrhagic lesions.

Methods: We measured the acoustic and background noise during sSWAN and cSWAN imaging and calculated the contrast-to-noise ratio (CNR) of the phantom consisting of eight chambers with different concentrations of superparamagnetic iron oxide. In the clinical study, we calculated the CNRs of hemorrhagic lesions in 15 patients and evaluated the images for conspicuity and artifact on each sequence and scored them on a 4-point scale.

View Article and Find Full Text PDF

Background: The development of fungicide resistance by pathogens is a major limiting factor for the control of plant diseases. To combat resistance development, the use of broad-spectrum but nonfungitoxic resistance inducers such as acibenzolar-S-methyl (ASM) is a promising approach because the orchestrated mechanisms underlying systemic acquired resistance induced by ASM are less likely to be overcome easily by pathogens. However, phytotoxicity is the main limiting factor of ASM.

View Article and Find Full Text PDF

Purpose: Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor.

View Article and Find Full Text PDF

The production of purified water by seawater desalination is now a significant countermeasure against recent severe water shortage. As the global warming is thought to be a dominant cause of the water scarcity problem, the energy employed for the desalination should be free from fossil fuels. We recently reported a simple membrane desalination combining the harvesting of solar energy and the membrane permeation of vaporized water.

View Article and Find Full Text PDF

Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies.

View Article and Find Full Text PDF