The TLR2 agonist, dipalmitoyl lipopeptide (Pam2LP), has been used as an immune adjuvant without much success. Pam2LP is recognised by TLR2/6 receptors in humans and in mice. This study examined the proliferative activity of cytotoxic T lymphocytes (CTL) using mouse Ag-presenting dendritic cells (DCs) and OT-I assay system, where a library of synthetic Pam2LP was utilised from the Staphylococcus aureus database.
View Article and Find Full Text PDF-derived diacylated lipoprotein M161Ag (MALP404) is recognized by human/mouse toll-like receptor (TLR) 2/TLR6. Short proteolytic products including macrophage-activating lipopeptide 2 (MALP2) have been utilized as antitumor immune-enhancing adjuvants. We have chemically synthesized a short form of MALP2 named MALP2s (-[2,3-bis(palmitoyloxy)propyl]-CGNNDE).
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
August 2018
The immune system eliminates advanced cancer when treated with programmed cell death protein-1 (PD-1) or its ligand (PD-L1) blockade, but PD-1 therapy is effective in only ∼20% of patients with solid cancer. The PD-1 antibody mainly acts on the effector phase of cytotoxic T lymphocytes (CTLs) in tumors but induces no activation of the priming phase of antigen-presenting dendritic cells (DCs). It is reasonable that both DC-priming and PD-1/L1 blocking are mandatory for efficient CTL-mediated tumor cytolysis.
View Article and Find Full Text PDFSuccessful cancer immunotherapy necessitates T cell proliferation and infiltration into tumor without exhaustion, a process closely links optimal maturation of dendritic cells (DC), and adjuvant promotes this process as an essential prerequisite. Poly(I:C) has contributed to adjuvant immunotherapy that evokes an antitumor response through the Toll-loke receptor 3 (TLR3)/TICAM-1 pathway in DC. However, the mechanism whereby Poly(I:C) acts on DC for T cell proliferation and migration remains undetermined.
View Article and Find Full Text PDFBackground: Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy.
View Article and Find Full Text PDFBackground: Triggering receptors expressed on myeloid cells (Trem) proteins are a family of cell surface receptors used to control innate immune responses such as proinflammatory cytokine production in mice. Trem genes belong to a rapidly expanding family of receptors that include activating and inhibitory paired-isoforms.
Results: By comparative genomic analysis, we found that Trem4, Trem5 and Trem-like transcript-6 (Treml6) genes typically paired receptors.
Ligand stimulation of the Toll-like receptors (TLRs) triggers innate immune response, cytokine production and cellular immune activation in dendritic cells. However, most TLR ligands are microbial constituents, which cause inflammation and toxicity. Toxic response could be reduced for secure immunotherapy through the use of chemically synthesized ligands with defined functions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2015
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition.
View Article and Find Full Text PDFPolyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F).
View Article and Find Full Text PDFCD4(+) T cell effectors are crucial for establishing antitumor immunity. Dendritic cell maturation by immune adjuvants appears to facilitate subset-specific CD4(+) T cell proliferation, but the adjuvant effect for CD4 T on induction of cytotoxic T lymphocytes (CTLs) is largely unknown. Self-antigenic determinants with low avidity are usually CD4 epitopes in mutated proteins with tumor-associated class I-antigens (TAAs).
View Article and Find Full Text PDFToll-like receptors (TLRs) and cytoplasmic RNA sensors have been reported to be involved in the regulation of hepatitis B virus (HBV) replication, but remain controversial due to the lack of a natural infectious model. Our current study sets out to characterize aspects of the role of the innate immune system in eliminating HBV using hydrodynamic-based injection of HBV replicative plasmid and knockout mice deficient in specific pathways of the innate system. The evidence indicated that viral replication was not affected by MAVS or TICAM-1 knockout, but absence of interferon regulatory factor 3 (IRF-3) and IRF-7 transcription factors, as well as the interferon (IFN) receptor, had an adverse effect on the inhibition of HBV replication, demonstrating the dispensability of MAVS and TICAM-1 pathways in the early innate response against HBV.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a major cause of liver disease. The innate immune system is essential for controlling HCV replication, and HCV is recognized by RIG-I and TLR3, which evoke innate immune responses through IPS-1 and TICAM-1 adaptor molecules, respectively. IL-28B is a type III IFN, and genetic polymorphisms upstream of its gene are strongly associated with the efficacy of polyethylene glycol-IFN and ribavirin therapy.
View Article and Find Full Text PDFThe innate immune system plays key roles in antimicrobial responses by developing the pattern-recognition receptors that recognize microbial components. The endosomal Toll-like receptors (TLRs) and cytosolic RIG-I-like receptors (RLRs) both recognize viral nucleic acids and are essential for antiviral immunity. Recent evidence suggests that compartmentalization of the receptors, and also their adaptor molecule, is important for discrimination between self and nonself and for distinct innate immune signals.
View Article and Find Full Text PDFExpert Opin Ther Targets
May 2013
Introduction: Many forms of RNA duplexes with agonistic activity for pattern-recognition receptors have been reported, some of which are candidates for adjuvant immunotherapy for cancer. These RNA duplexes induce cytokines, interferons (IFNs) and cellular effectors mainly via two distinct pathways, TLR3/TICAM-1 and MDA5/MAVS.
Areas Covered: We determined which pathway of innate immunity predominantly participates in evoking tumor immunity in response to RNA adjuvants.
The engagement of Toll-like receptor 3 (TLR3) leads to the oligomerization of the adaptor TICAM-1 (TRIF), which can induces either of three acute cellular responses, namely, cell survival coupled to Type I interferon production, or cell death, via apoptosis or necrosis. The specific response elicited by TLR3 determines the fate of affected cells, although the switching mechanism between the two cell death pathways in TLR3-stimulated cells remains molecularly unknown. Tumor necrosis factor α (TNFα)-mediated cell death can proceed via apoptosis or via a non-apoptotic pathway, termed necroptosis or programmed necrosis, which have been described in detail.
View Article and Find Full Text PDFPolyI:C is a nucleotide pattern molecule that induces cross-presentation of foreign Ag in myeloid dendritic cells (DC) and MHC Class I-dependent proliferation of cytotoxic T lymphocytes (CTL). DC (BM or spleen CD8α(+)) have sensors for dsRNA including polyI:C to signal facilitating cross-presentation. Endosomal TLR3 and cytoplasmic RIG-I/MDA5 are reportedly responsible for polyI:C sensing and presumed to deliver signal for cross-presentation via TICAM-1 (TRIF) and IPS-1 (MAVS, Cardif, VISA) adaptors, respectively.
View Article and Find Full Text PDFRecent progress in understanding the outcomes of pattern-recognition by myeloid dendritic cells (mDC) allows us to delineate the pathways driving natural killer (NK) cell activation. Mouse mDC mature in response to microbial patterns and are converted to an NK cell-activating phenotype. The MyD88 pathway, the Toll/IL-1 receptor homology domain-containing adaptor molecule (TICAM)-1 (TRIF) pathway, and the interferon (IFN)-β promoter stimulator 1 (IPS-1) pathway in mDC participate in driving NK activation, as shown by analyses in knockout mice.
View Article and Find Full Text PDFIn myeloid dendritic cells (mDCs), TLR3 is expressed in the endosomal membrane and interacts with the adaptor toll/interleukin 1 receptor homology domain-containing adaptor molecule 1 (TICAM-1; TRIF). TICAM-1 signals culminate in interferon (IFN) regulatory factor (IRF) 3 activation. Co-culture of mDC pretreated with the TLR3 ligand polyI:C and natural killer (NK) cells resulted in NK cell activation.
View Article and Find Full Text PDFNatural killer (NK) cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC) in various modes.
View Article and Find Full Text PDFWe recently developed a cell culture system for hepatitis E virus (HEV) in PLC/PRF/5 and A549 cells, using fecal specimens from HEV-infected patients. Since transfusion-associated hepatitis E has been reported, we examined PLC/PRF/5 and A549 cells for the ability to support replication of HEV in various serum samples obtained from 23 patients with genotype 1, 3, or 4 HEV. HEV progenies emerged in culture media of PLC/PRF/5 cells, regardless of the coexistence of HEV antibodies in serum but dependent on the load of HEV inoculated (31% at 2.
View Article and Find Full Text PDFMonocyte-derived dendritic cells (mDCs) recognize viral RNA extrinsically by Toll-like receptor (TLR) 3 on the membrane and intrinsically retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm to induce type I IFNs and mDC maturation. When mDCs were treated with live or UV-irradiated respiratory syncytial virus (RSV), early ( approximately 4 h) induction of IFN-beta usually occurs in other virus infections was barely observed. Live RSV subsequently replicated to activate the cytoplasmic IFN-inducing pathway leading to robust type I IFN induction.
View Article and Find Full Text PDFTo investigate the duration of fecal shedding and changing loads of hepatitis E virus (HEV) in feces and serum from patients with acute HEV infection, HEV RNA was quantitated in periodic serum and fecal specimens obtained from 11 patients with sporadic acute hepatitis E. All 11 patients had detectable HEV RNA in serum at admission, with the highest viral load being 1.9 x 10(3) to 1.
View Article and Find Full Text PDFLipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3.
View Article and Find Full Text PDF