Sox6 is a transcription factor that induces neuronal differentiation in P19 cells; its suppression not only inhibits neuronal differentiation but also induces retinoic acid (RA)-dependent apoptosis of P19 cells. In the present study, we found that Sox6 suppression-induced apoptosis was mediated by activation of caspase 9 and 3. Moreover, we noted a weak leakage of cytochrome c into the cytoplasm from the mitochondria, indicating that apoptosis occurs through a mitochondrial pathway in Sox6-suppressed P19 (P19[anti-Sox6]) cells.
View Article and Find Full Text PDFIt has been reported that the activity of mitochondrial aconitase (m-aconitase) is rapidly inhibited in a variety of cells when exposed to nitric oxide (NO). In present study, we found that NO significantly increased the number of surviving neurons via enhanced mitochondrial functions with simultaneous addition of the [Fe(II)(β-citryl-L-glutamate; β-CG)] complex. In vitro, a variety of aconitase-inhibitors, such as fluorocitrate, cyanide ion, ferricyanide ([Fe(CN)6]), and various oxidants including superoxide anion, inhibited the activity of m-aconitase even in the presence of Fe(II), whereas a NO-donor, nitroprusside (SNP) ([Fe(CN)5NO]), was the only agent that significantly increased activity of that enzyme.
View Article and Find Full Text PDFThe compound β-citryl-L-glutamate (β-CG) was initially isolated from developing brains, though its functional roles remain unclear. In in vitro experiments, the [Fe(II)(β-CG)] complex activated aconitase in the presence of reducing reagents, whereas no Fe complex with citrate, glutamate, or deferoxamine displayed such an effect. β-CG and [Fe(II)(β-CG)] both bound to the fourth labile Fe atom (Fe(a)) in the [4Fe-4S] cluster of aconitase.
View Article and Find Full Text PDFβ-Citryl-L-glutamate (β-CG) is a unique compound initially isolated from developing brains, which also appears in high concentrations during the period characterized by growth and differentiation of neurons in developing animals, and then decreases with maturation. However, its functional roles remain unclear. The stability constant obtained in our previous pH titration studies showed that β-CG forms relatively strong complexes with copper.
View Article and Find Full Text PDFThe compound beta-citryl-L-glutamate (beta-CG) was initially isolated from developing brains, while it has also been found in high concentrations in testes and eyes. However, its functional roles are unclear. To evaluate its coordination with metal ions, we performed pH titration experiments.
View Article and Find Full Text PDFRegulation of the kallikrein-kinin system in cerebral inflammation is still unclear. Here, we used reverse-transcription polymerase chain reaction (RT-PCR) techniques to show that lipopolysaccharide (LPS) activates the kallikrein-kinin system by enhancing liberation of bradykinin (BK), and alters mRNA levels of kallikrein-kinin system components, including high molecular weight (H-) and low molecular weight (L-) kininogens, in ECPC4 cells, a cell line of mouse choroid plexus epithelium. LPS treatment increased liberation of immunoreactive bradykinin in the supernatant of ECPC4 cells, and addition of LPS (500 ng/ml) to cultures resulted in elevation of H- and L-kininogen mRNA levels in ECPC4 cells within 24-48 h.
View Article and Find Full Text PDFPeroxisome proliferators (PxPs) induce peroxisomal beta-oxidation (Px-ox) in the liver of rodents and have a hypolipidemic function. To investigate hypolipidemic effect of PxPs, the relationship between TG fluctuation and Px-ox activity, as an indicator of the function of PxPs, was studied in primary cultured rat hepatocytes. Nafenopin (Nf) treatment of hepatocytes caused an increase in Px-ox activity in association with cellular TG accumulation in a time-dependent manner with a coefficient of r=0.
View Article and Find Full Text PDFThe Sox6 gene is a member of the Sox gene family, which encodes transcription factors, and previous studies have suggested that it plays an important role in the development of the central nervous system. Aggregation of embryonic carcinoma P19 cells with retinoic acid (RA) results in the development of neurons, glia, and fibroblast-like cells. Sox6 mRNA increases rapidly in P19 cells during RA induction and then decreases during differentiation into neuronal cells.
View Article and Find Full Text PDFThe Sox6 gene is a member of the Sox gene family that encodes transcription factors. Previous studies have suggested that Sox6 plays an important role in the development of the central nervous system. Aggregation of embryonic carcinoma P19 cells with retinoic acid (RA) results in the development of neurons, glia and fibroblast-like cells.
View Article and Find Full Text PDFA cDNA encoding rat homologue of the previously characterized mouse Sox6 was isolated by a polymerase chain reaction (PCR) cloning strategy. Comparison of this eDNA with homologous mouse, human and rainbow trout cDNA exhibited an overall amino acid sequence identity of 99.6, 89.
View Article and Find Full Text PDFProtein phosphorylation plays many important roles in cell functions and cell differentiation. To clarify the roles of protein phosphorylation in early embryonic development in mice, 2-cell embryos were cultured in the presence of various protein phosphatase inhibitors such as calyculin A, okadaic acid, cyclosporin A, tacrolimus (FK506) and benzyl-phosphonic acid. Calyculin A potently inhibited the 2-cell cleavage to the 4-cell stage.
View Article and Find Full Text PDF