Publications by authors named "Masafumi Tsuboi"

Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM).

View Article and Find Full Text PDF

Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive.

View Article and Find Full Text PDF

Dynamic changes in histone modifications mediated by Polycomb group proteins can be indicative of the transition of gene repression mode during development. Here, we present methods for the isolation of mouse neocortical neural progenitor-stem cells (NPCs) and their culture, followed by chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) techniques to examine changes in histone H2A ubiquitination patterns at various developmental stages. This protocol can be applied for both in vitro NPCs and NPCs directly isolated from mouse neocortices.

View Article and Find Full Text PDF

Immature neurons undergo morphological and physiological maturation in order to establish neuronal networks. During neuronal maturation, a large number of genes change their transcriptional levels, and these changes may be mediated by chromatin modifiers. In this study, we found that the level of Ezh1, a component of Polycomb repressive complex 2 (PRC2), increases during neuronal maturation in mouse neocortical culture.

View Article and Find Full Text PDF

While all the developmental genes are temporarily repressed for future activation in the pluripotent stem cells, non-neural genes become persistently repressed in the course of commitment to the neuronal lineage. Although Polycomb group proteins (PcG) are key factors for both temporary and persistent repression of the developmental genes, how the same group of proteins can differentially repress target genes remains unclarified. The identification of a variety of PcG complexes and activities sheds light on these issues.

View Article and Find Full Text PDF

Polycomb repressive complex (PRC) 1 maintains developmental genes in a poised state through monoubiquitination (Ub) of histone H2A. Although Ub-independent functions of PRC1 have also been suggested, it has remained unclear whether Ub-dependent and -independent functions of PRC1 operate differentially in a developmental context. Here, we show that the E3 ubiquitin ligase activity of Ring1B, a core component of PRC1, is necessary for the temporary repression of key neuronal genes in neurogenic (early-stage) neural stem or progenitor cells (NPCs) but is dispensable for the persistent repression of these genes associated with the loss of neurogenic potential in astrogliogenic (late-stage) NPCs.

View Article and Find Full Text PDF

During neocortical development, neural precursor cells (NPCs, or neural stem cells) produce neurons first and astrocytes later. Although the timing of the fate switch from neurogenic to astrogenic is critical for determining the number of neurons, the mechanisms are not fully understood. Here, we show that the polycomb group complex (PcG) restricts neurogenic competence of NPCs and promotes the transition of NPC fate from neurogenic to astrogenic.

View Article and Find Full Text PDF

Bacterial translation elongation factor G (EF-G) catalyzes translocation during peptide elongation and mediates ribosomal disassembly during ribosome recycling in concert with the ribosomal recycling factor (RRF). Two homologs of EF-G have been identified in mitochondria from yeast to man, EF-G1mt and EF-G2mt. Here, we demonstrate that the dual function of bacterial EF-G is divided between EF-G1mt and EF-G2mt in human mitochondria (RRFmt).

View Article and Find Full Text PDF