Publications by authors named "Masafumi Shimada"

Previous pharmacological data have shown the possible existence of functional interactions between μ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models.

View Article and Find Full Text PDF

Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhA) and ensures the strict order of flagellar assembly. FlhA goes through dynamic domain motions during protein export, but it remains unknown how it occurs.

View Article and Find Full Text PDF

The flagellar axial component proteins are exported to the distal end of the growing flagellum for self-assembly by the flagellar type III export apparatus. FlhA is a key membrane protein of the export apparatus, and its C-terminal cytoplasmic domain (FlhA(C)) is a part of an assembly platform for the three soluble export components, FliH, FliI, and FliJ, as well as export substrates and chaperone-substrate complexes. FlhA(C) is composed of a flexible linker region and four compact domains (A(C)D1-A(C)D4).

View Article and Find Full Text PDF

FlhA is the largest integral membrane component of the flagellar type III protein export apparatus of Salmonella and is composed of an N-terminal transmembrane domain (FlhA(TM)) and a C-terminal cytoplasmic domain (FlhA(C)). FlhA(C) is thought to form a platform of the export gate for the soluble components to bind to for efficient delivery of export substrates to the gate. Here, we report a structure of FlhA(C) at 2.

View Article and Find Full Text PDF

For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhA(C)) is required for protein export, but it is not clear how it works.

View Article and Find Full Text PDF

The axial component proteins of the bacterial flagellum are synthesized in the cytoplasm and then translocated into the central channel of the flagellum by the flagellar type III protein-export apparatus for self-assembly at the distal growing end of the flagellum. FliJ is an essential cytoplasmic component of the export apparatus. In this study, Salmonella FliJ with an extra three residues (glycine, serine and histidine) attached to the N-terminus as the remainder of a His tag (GSH-FliJ) was purified and crystallized.

View Article and Find Full Text PDF

Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.

View Article and Find Full Text PDF