Comput Math Methods Med
January 2014
The Stanford Heart Transplant data were collected to model survival in patients using penalized smoothing splines for covariates whose values change over the course of the study. The basic idea of the present study is to use a logistic regression model and a generalized additive model with B-splines to estimate the survival function. We model survival time as a function of patient covariates and transplant status and compare the results obtained using smoothing spline, partial logistic, Cox's proportional hazards, and piecewise exponential models.
View Article and Find Full Text PDFComput Math Methods Med
July 2012
We discuss a flexible method for modeling survival data using penalized smoothing splines when the values of covariates change for the duration of the study. The Cox proportional hazards model has been widely used for the analysis of treatment and prognostic effects with censored survival data. However, a number of theoretical problems with respect to the baseline survival function remain unsolved.
View Article and Find Full Text PDFCox's proportional hazards model has been widely used for the analysis of treatment and prognostic effects with censored survival data. In this paper, we propose a neural network model based on bootstrapping to estimate the survival function and predict the short-term survival at any time during the course of the disease. The bootstrapping for the neural network is introduced when selecting the optimum number of hidden units and testing the goodness-of-fit.
View Article and Find Full Text PDFBackground: Dengue is the most prevalent mosquito-borne virus, and potentially fatal dengue hemorrhagic fever (DHF) occurs mainly in secondary infections. It recently was hypothesized that, due to the presence of cross-immunity, the relationship between the incidence of DHF and transmission intensity may be negative at areas of intense transmission. We tested this hypothesis empirically, using vector abundance as a surrogate of transmission intensity.
View Article and Find Full Text PDF