Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles.
View Article and Find Full Text PDFA B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5).
View Article and Find Full Text PDFIntracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization.
View Article and Find Full Text PDFArabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development.
View Article and Find Full Text PDFPost-embryonic plant growth is dependent on a functional shoot apical meristem (SAM) that provides cells for continuous development of new aerial organs. However, how the SAM is dynamically maintained during vegetative development remains largely unclear. We report here the characterization of a new SAM maintenance mutant, sha1-1 (shoot apical meristem arrest 1-1), that shows a primary SAM-deficient phenotype at the adult stage.
View Article and Find Full Text PDFPlant Cell Physiol
December 2006
Sugar regulates a variety of genes and controls plant growth and development similarly to phytohormones. As part of a screen for Arabidopsis mutants with defects in sugar-responsive gene expression, we identified a loss-of-function mutation in the HOOKLESS1 (HLS1) gene. HLS1 was originally identified to regulate apical hook formation of dark-grown seedlings (Lehman et al.
View Article and Find Full Text PDFPollen development is a fundamental and essential biological process in seed plants. Pollen mother cells generated in anthers undergo meiosis, which gives rise to haploid microspores. The haploid cells then develop into mature pollen grains through two mitotic cell divisions.
View Article and Find Full Text PDFThe low-beta-amylase1 (lba1) mutant of Arabidopsis thaliana has reduced sugar-induced expression of Atbeta-Amy and shows pleiotropic phenotypes such as early flowering; short day-sensitive growth; and seed germination that is hypersensitive to glucose and abscisic acid and resistant to mannose. lba1 was a missense mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay (NMD), which eliminates mRNAs with premature termination codons (PTCs), and replaces highly conserved Gly851 of UPF1 with Glu. Expression of the wild-type UPF1 in lba1 rescued not only the reduced sugar-inducible gene expression, but also early flowering and altered seed-germination phenotypes.
View Article and Find Full Text PDFIn plant meristems, each cell divides and differentiates in a spatially and temporally regulated manner, and continuous organogenesis occurs using cells derived from the meristem. We report the identification of the Arabidopsis thaliana TEBICHI (TEB) gene, which is required for regulated cell division and differentiation in meristems. The teb mutants show morphological defects, such as short roots, serrated leaves, and fasciation, as well as defective patterns of cell division and differentiation in the meristem.
View Article and Find Full Text PDFArabidopsis APETALA2 (AP2) encodes a member of the AP2/EREBP (ethylene responsive element binding protein) class of transcription factors and is involved in the specification of floral organ identity, establishment of floral meristem identity, suppression of floral meristem indeterminancy, and development of the ovule and seed coat. Here, we show that loss-of-function ap2 mutations cause an increase in seed mass relative to that of wild-type seeds. Analysis of an allelic series of ap2 mutations showed that increases in seed mass corresponded with the severity of defects in flower structure, indicating that AP2 activity directly influences seed mass.
View Article and Find Full Text PDFPhylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves.
View Article and Find Full Text PDFRoot apical meristem (RAM) and shoot apical meristem (SAM) are vital for the correct development of the plant. The direction, frequency, and timing of cell division must be tightly controlled in meristems. Here, we isolated new Arabidopsis mutants with shorter roots and fasciated stems.
View Article and Find Full Text PDFNADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide. To elucidate the physiological function of three differentially regulated POR isoforms (PORA, PORB and PORC) in Arabidopsis thaliana, we isolated T-DNA tagged null mutants of porB and porC. The mature seedlings of the mutants had normal photosynthetic competencies, showing that PORB and PORC are interchangeable and functionally redundant in developed plants.
View Article and Find Full Text PDFFloral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by ectopic expression of the FLOWERING LOCUS T (FT) gene, a floral pathway integrator.
View Article and Find Full Text PDF