Publications by authors named "Masaaki Hayashi"

Persistent or paroxysmal atrial fibrillation is typically treated with pulmonary vein isolation (PVI) ablation under deep sedation with propofol. Intraoperative hemodynamic or respiratory instability often interferes with the surgical procedure. We retrospectively investigated risk factors in 80 patients who underwent their first PVI ablation for atrial fibrillation at our hospital.

View Article and Find Full Text PDF

Human behavior requires inter-regional crosstalk to employ the sensorimotor processes in the brain. Although external neuromodulation techniques have been used to manipulate interhemispheric sensorimotor activity, a central controversy concerns whether this activity can be volitionally controlled. Experimental tools lack the power to up- or down-regulate the state of the targeted hemisphere over a large dynamic range and, therefore, cannot evaluate the possible volitional control of the activity.

View Article and Find Full Text PDF

Background: Oscillations in the resting-state scalp electroencephalogram (EEG) represent various intrinsic brain activities. One of the characteristic EEG oscillations is the sensorimotor rhythm (SMR)-with its arch-shaped waveform in alpha- and betabands-that reflect sensorimotor activity. The representation of sensorimotor activity by the SMR depends on the signal-to-noise ratio achieved by EEG spatial filters.

View Article and Find Full Text PDF

Oscillatory electroencephalographic (EEG) activity is associated with the excitability of cortical regions. Visual feedback of EEG-oscillations may promote sensorimotor cortical activation, but its spatial specificity is not truly guaranteed due to signal interaction among interhemispheric brain regions. Guiding spatially specific activation is important for facilitating neural rehabilitation processes.

View Article and Find Full Text PDF

A variety of neural substrates are implicated in the initiation, coordination, and stabilization of voluntary movements underpinned by adaptive contraction and relaxation of agonist and antagonist muscles. To achieve such flexible and purposeful control of the human body, brain systems exhibit extensive modulation during the transition from resting state to motor execution and to maintain proper joint impedance. However, the neural structures contributing to such sensorimotor control under unconstrained and naturalistic conditions are not fully characterized.

View Article and Find Full Text PDF

Objective: A critical feature for the maintenance of precise skeletal muscle force production by the human brain is its ability to configure motor function activity dynamically and adaptively in response to visual and somatosensory information. Existing studies have concluded that not only the sensorimotor area but also distributed cortical areas act cooperatively in the generation of motor commands for voluntary force production to the desired level. However, less attention has been paid to such physiological mechanisms in conventional brain-computer interface (BCI) design and implementation.

View Article and Find Full Text PDF

Objective measurements of the ossicular mobility have not been commonly performed during the surgery, and the assessment of ossicular mobility is made by palpation in most cases. Palpation is inherently subjective and may not always be reliable, especially in milder degrees of ossicular fixation and in the case of multiple fixation. Although several devices have been developed to quantitatively measure the ossicular mobility during surgery, they have not been widely used.

View Article and Find Full Text PDF

Objective: The aim of the study was to compare the accuracy of quantification of iodine and Hounsfield unit (HU) values on virtual monochromatic imaging (VMI) using dual-layer computed tomography (DLCT) and fast kilovolt-switching computed tomography (FKSCT).

Materials And Methods: This study was performed in 2 phantoms (large and small) using 16 rods representing different materials (iodine, calcium, blood, and adipose tissue) with different dimensions and concentrations. The absolute percentage errors (absolute ratio of measurement error to true iodine concentration) for iodine concentration and HU value on VMI at 50, 70, and 100 keV were compared between DLCT and FKSCT.

View Article and Find Full Text PDF

The human genome contains thousands of retrocopies, mostly as processed pseudogenes, which were recently shown to be prevalently transcribed. In particular, those specifically acquired in the human lineage are able to modulate gene expression in a manner that contributed to the evolution of human-specific traits. Therefore, knowledge of the human-specific retrocopies that are transcribed or their full-length transcript structure contributes to better understand human genome evolution.

View Article and Find Full Text PDF

Humanin, a short bioactive peptide, inhibits cell death in a variety of cell-based death models through Humanin receptors in vitro. In vivo, Humanin ameliorates both muscarinic receptor antagonist-induced memory impairment in normal mice and memory impairment in Alzheimer's disease (AD)-relevant mouse models including aged transgenic mice expressing a familial AD-linked gene. Recently, calmodulin-like skin protein (CLSP) has been shown to be secreted from skin tissues, contain a region minimally similar to the core region of Humanin, and inhibit AD-related neuronal death through the heterotrimeric Humanin receptor on the cell surface in vitro.

View Article and Find Full Text PDF

TLR7 (Toll-like receptor 7) mediates anti-viral immunity by recognizing ssRNA (single-stranded RNA) viruses. Small-molecular-mass TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types, including pDCs (plasmacytoid dendritic cells), it is also expressed in non-native expressing cells (e.

View Article and Find Full Text PDF

The microRNA (miRNA) processing enzyme Dicer1 is required for zygotic and embryonic development, but the early embryonic lethality of Dicer1 null alleles in mice has limited our ability to address the role of Dicer1 in normal mouse growth and development. To address this question, we used a mouse mutant with a hypomorphic Dicer1 allele (Dicer(d/d)) and found that Dicer1 deficiency resulted in female infertility. This defect in female Dicer(d/d) mice was caused by corpus luteum (CL) insufficiency and resulted, at least in part, from the impaired growth of new capillary vessels in the ovary.

View Article and Find Full Text PDF

Many heat-shock proteins (Hsp) are members of evolutionarily conserved families of chaperone proteins that inhibit the aggregation of unfolded polypeptides and refold denatured proteins, thereby remedying phenotypic effects that may result from protein aggregation or protein instability. Here we report that the mitochondrial chaperone Hsp40, also known as Dnaja3 or Tid1, is differentially expressed during cardiac development and pathological hypertrophy. Mice deficient in Dnaja3 developed dilated cardiomyopathy (DCM) and died before 10 weeks of age.

View Article and Find Full Text PDF

Tid1 is the human homologue of the Drosophila tumor suppressor, Tid56. Reducing the expression of Tid1 in MDA-MB231 breast cancer cells enhanced their migration without affecting their survival or growth rate. From microarray screening, we discovered that after Tid1 depletion, the mRNA level of interleukin-8 (IL-8) was significantly increased in these cancer cells, which consequently increased secretion of IL-8 protein by 3.

View Article and Find Full Text PDF

Although big mitogen-activated protein kinase 1 (BMK1) has been shown to be critical for embryonic angiogenesis, the role of BMK1 in tumor-associated neovascularization is poorly understood. Exogenous tumors were established in BMK1+/+, BMK1flox/+, or BMK1flox/flox mice carrying the Mx1-Cre transgene. Induced deletion of host BMK1 gene significantly reduced the volumes of B16F10 and LL/2 tumor xenografts in BMK1flox/flox mice by 63% and 72%, respectively.

View Article and Find Full Text PDF

Mitogen-activated protein (MAP) kinase cascades play a central role in mediating extracellular stimuli-induced intracellular signaling during cell activation. The fourth and least studied mammalian MAP kinase pathway, big MAP kinase 1 (BMK1), also known as extracellular signal regulated kinase 5 (ERK5), is activated in response to growth factors and stress. Activation of this signaling pathway has been implicated not only in physiological functions such as cell survival, proliferation and differentiation but also in pathological processes such as carcinogenesis, cardiac hypertrophy and atherosclerosis.

View Article and Find Full Text PDF

Big mitogen-activated protein kinase 1 (BMK1), also known as ERK5, is a member of the MAPK family. Genetic ablation of BMK1 in mice leads to embryonic lethality, precluding the exploration of pathophysiological roles of BMK1 in adult mice. We generated a BMK1 conditional mutation in mice in which disruption of the BMK1 gene is under the control of the inducible Mx1-Cre transgene.

View Article and Find Full Text PDF

Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. We generated a Tid1 conditional mutation in mice, and the subsequent global removal of the Tid1 protein was achieved by crossing these conditional knockout mice with general deletor mice. No Tid1(-/-) embryos were detected as early as embryonic day 7.

View Article and Find Full Text PDF

This review provides a discussion of the pathophysiologic significance of animal models of the activity-stress paradigm and the role of plasma glucose level in the appearance of physical stress responses of those models. Many research reports have demonstrated that animal models exposed to activity-stress are useful as a "symptomatic model" of anorexia nervosa and obsessive-compulsive disorder as well as peptic ulcer. Our findings show that a decrease in plasma glucose concentration is an important factor in determining the activity-stress-induced physical responses.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) plays a critical role in the development, proliferation, and differentiation of cells of epithelial and mesenchymal origin. These EGFR-dependent cellular processes are mediated by a repertoire of intracellular signaling pathways triggered by the activation of the EGFR cytoplasmic domain, which originates from ligand binding of its extracellular domain. To understand the molecular mechanisms by which the intracellular domain of EGFR transmits mitogenic messages to the downstream signaling pathways, we used the cytoplasmic region of EGFR as bait in yeast two-hybrid screening.

View Article and Find Full Text PDF

We have characterized the gene for human phosphodiesterase 8B, PDE8B, and cloned the full-length cDNA for human PDE8B (PDE8B1) and two splice variants (PDE8B2 and PDE8B3). The PDE8B gene is mapped to the long arm of chromosome 5 (5q13) and is composed of 22 exons spanning over approximately 200kb. The donor and acceptor splice site sequences match the consensus sequences for the exon-intron boundaries of most eukaryotic genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc9c2t1majjr0tp4qm7fk0ohbr2a7v4af): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once