Diabetic encephalopathy is now accepted as an important complication of diabetes. The breakdown of the blood-brain barrier (BBB) is associated with dementia in patients with type 2 diabetes mellitus (T2DM). The purpose of this study was to identify the possible mechanisms responsible for the disruption of the BBB after exposure to advanced glycation end-products (AGEs).
View Article and Find Full Text PDFThe destruction of blood-brain barrier (BBB) and blood-nerve barrier (BNB) has been considered to be a key step in the disease process of a number of neurological disorders including cerebral ischemia, Alzheimer's disease, multiple sclerosis, and diabetic neuropathy. Although glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) facilitate neuronal or axonal regeneration in the brain or peripheral nerves, their action in the BBB and BNB remains unclear. The purpose of the present study was to elucidate whether these neurotrophic factors secreted from the brain or peripheral nerve pericytes increase the barrier function of the BBB or BNB, using our newly established human brain microvascular endothelial cell (BMEC) line or peripheral nerve microvascular endothelial cell (PnMEC) line.
View Article and Find Full Text PDFThe objectives of this study were to establish pure blood-nerve barrier (BNB) and blood-brain barrier (BBB)-derived pericyte cell lines of human origin and to investigate their unique properties as barrier-forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature-sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α-smooth muscle actin, NG2, platelet-derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM.
View Article and Find Full Text PDFThe objective of this study was to establish pure blood-nerve barrier (BNB)-derived peripheral nerve pericyte cell lines and to investigate their unique properties as barrier-forming cells. We isolated peripheral nerve, brain, and lung pericytes from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines expressed several pericyte markers such as alpha-smooth muscle actin, NG2, osteopontin, and desmin, whereas they did not express endothelial cell markers such as vWF and PECAM.
View Article and Find Full Text PDF