Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.
View Article and Find Full Text PDFIn a field experiment on metal contaminated and EDTA-remediated soil we studied plant performance, mycorrhizal associations and prospects of potential re-use of remediated soil as a garden substrate. Two experimental plots of 4 × 1 × 0.3 m were filled, one with remediated and the other with original contaminated soil.
View Article and Find Full Text PDFWe applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis.
View Article and Find Full Text PDFThe effect of remediation using three EDTA doses (10, 30, 60 mmol kg(-1)) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg(-1) of Pb, Zn and Cd, respectively.
View Article and Find Full Text PDF