Publications by authors named "Mas R Syamsunarno"

Introduction: Ventricular septal defect is the most common CHD, leading to pulmonary hypertension. Significantly lower 25-hydroxyvitamin D level was reported in children with CHD compared with healthy controls. The current study aimed to investigate the correlation between 25-hydroxyvitamin D level and pulmonary hypertension in children with ventricular septal defect.

View Article and Find Full Text PDF

Background: Fatty acids constitute the critical components of cell structure and function, and dysregulation of fatty acid composition may exert diverging vascular effects including proliferation, migration, and differentiation of vascular smooth muscle cells (VSMCs). However, direct evidence for this hypothesis has been lacking. We investigated the role of elongation of long-chain fatty acid member 6 (Elovl6), a rate-limiting enzyme catalyzing the elongation of saturated and monounsaturated long-chain fatty acid, in the regulation of phenotypic switching of VSMC.

View Article and Find Full Text PDF

Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment.

View Article and Find Full Text PDF

Hypothermia is rapidly induced during cold exposure when thermoregulatory mechanisms, including fatty acid (FA) utilization, are disturbed. FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipose tissues and macrophages, have been identified as key molecules in the pathogenesis of overnutrition-related diseases, such as insulin resistance and atherosclerosis. We have recently shown that FABP4/5 are prominently expressed in capillary endothelial cells in the heart and skeletal muscle and play a crucial role in FA utilization in these tissues.

View Article and Find Full Text PDF

During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting.

View Article and Find Full Text PDF

Despite the established role of alveolar type II epithelial cells for the maintenance of pulmonary function, little is known about the deregulation of lipid composition in the pathogenesis of pulmonary fibrosis. The elongation of long-chain fatty acids family member 6 (Elovl6) is a rate-limiting enzyme catalysing the elongation of saturated and monounsaturated fatty acids. Here we show that Elovl6 expression is significantly downregulated after an intratracheal instillation of bleomycin (BLM) and in human lung with idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Objective: Fatty acids (FAs) are the major substrate for energy production in the heart. Here, we hypothesize that capillary endothelial fatty acid binding protein 4 (FABP4) and FABP5 play an important role in providing sufficient FAs to the myocardium.

Approach And Results: Both FABP4/5 were abundantly expressed in capillary endothelium in the heart and skeletal muscle.

View Article and Find Full Text PDF

Background: Endothelium is a crucial blood-tissue interface controlling energy supply according to organ needs. We investigated whether peroxisome proliferator-activated receptor-γ (PPARγ) induces expression of fatty acid-binding protein 4 (FABP4) and fatty acid translocase (FAT)/CD36 in capillary endothelial cells (ECs) to promote FA transport into the heart.

Methods And Results: Expression of FABP4 and CD36 was induced by the PPARγ agonist pioglitazone in human cardiac microvessel ECs (HCMECs), but not in human umbilical vein ECs.

View Article and Find Full Text PDF