Publications by authors named "Marziyeh Nazari"

Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO3H group (SO3H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb2+) in water at 25.

View Article and Find Full Text PDF

Hagfish exudate is a natural biological macromolecule made of keratin intermediate filament protein skeins and mucin vesicles. Here, we successfully examined this remarkable biomaterial as a substrate for three-dimensional (3D) cell culturing purposes. After the sterilization with chloroform vapor, Dulbecco's modified eagle medium was mixed with the exudate to rupture the vesicles and skeins; a highly soft, adherent, fibrous and biocompatible hydrogel was formed.

View Article and Find Full Text PDF

Two heteropolytungstate structures, Keggin (HPWO) and Preyssler (H[NaPWO]), were used to synthesize conductive silver nanoparticle-polyaniline-heteropolytungstate (AgNPs-PAni-HPW) nanocomposites. During the oxidative polymerization of aniline, heteropolyblue was generated and served as the reducing agent to stabilize and distribute AgNPs within "PAni-Keggin" and "PAni-Preyssler" matrixes as well as on their surfaces. The prepared nanocomposites and AgNPs were characterized using UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), pore size distribution BET, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Optical quality metal organic framework (MOF) thin films were integrated, for the first time, to the best of our knowledge, with structured optical fiber substrates to develop MOF-fiber sensors. The MOF-fiber structure, UiO-66 (Zr-based MOF is well known for its water stability), is a thin film that acts as an effective analyte collector. This provided a Fabry-Perot sensor in which concentrations of up to 15 mM Rhodamine-B were detected via wavelength shifts in the interference spectrum.

View Article and Find Full Text PDF