For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability.
View Article and Find Full Text PDFBackground: The extremely fast delivery of doses with ultra high dose rate (UHDR) beams necessitates the investigation of novel approaches for real-time dosimetry and beam monitoring. This aspect is fundamental in the perspective of the clinical application of FLASH radiotherapy (FLASH-RT), as conventional dosimeters tend to saturate at such extreme dose rates.
Purpose: This study aims to experimentally characterize newly developed silicon carbide (SiC) detectors of various active volumes at UHDRs and systematically assesses their response to establish their suitability for dosimetry in FLASH-RT.
In recent times, ion implantation has received increasing interest for novel applications related to deterministic material doping on the nanoscale, primarily for the fabrication of solid-state quantum devices. For such applications, precise information concerning the number of implanted ions and their final position within the implanted sample is crucial. In this work, we present an innovative method for the detection of single ions of MeV energy by using a sub-micrometer ultra-thin silicon carbide sensor operated as an in-beam counter of transmitted ions.
View Article and Find Full Text PDF